High Fiber Diet Decreases the Level of Interleukin 1


Diet containing high fat and fructose causes hyperlipidemia which is characterized by hypercholesterolemia and hypertriglyceridemia. Hyperlipidemia produces free fatty acids that induce the secretion of proinflammatory cytokines such as Interleukin Iβ (IL-Iβ). Secretion of IL-Iβ induced by NF-Kβ can be suppressed by short chain fatty acids (SCFA). This study aimed to determine the effects of high fiber diet on the level of IL 1β hyperlipidemia model of rats. Male Wistar rats (n=25) of eight weeks old were divided into five groups: control (K), hyperlipidemia (H), hyperlipidemia with high fiber diet in a doses of 2.6 g/rat/day (P1), 5.2 g/rat/day (P2), and 7.8 g/rat/day (P3). Serum levels of IL-1β were measured in a pre- and posttest manner. The pretest was taken at 7 weeks of treatment, while the posttest was measured at the final 13 weeks of this protocol.
Pretest and posttest of serum levels of IL-1β were measured with ELISA. The resulting pre- and posttest serum levels of IL-1β were analyzed with paired t-test by using SPSS 23.0 software. Serum levels of IL-1β in rats which received high fiber diet of doses of 2.6, 5.2 and 7.8 g/rat/day were significantly lower compared to the hyperlipidemia rats (p<0.05). We conclude that high fiber diet could reduce the level of IL-1β in rats.

[1] Maithilikarpagaselvi M, Sridhar M G, Swaminathan R P, Sripradha R and Badhe B 2016 Pharm Biol. 54 2857-63

[2] Klop B, Elte J W F and Cabezas M C 2013 Nutrients 5 1218-40

[3] Evans K, Burdge G C, Wootton S A, Clark M L and Frayn K N 2002 Diabetes 51 2684- 90

[4] Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H and Aljada A 2003 Diabetes 52 2882-7

[5] Huang S, Rutkowsky J M, Snodgrass R G, Moore K D O, Schneider D A and Newman J A 2012 J Lipid Res. 53 2002-13

[6] Luo Z L, Ren J D, Huang Z, Wang T, Xiang K, and Cheng L 2017 Cell Physiol Biochem. 42 1635-44

[7] Brough D, and Rothwell N J 2007 J. Cell Sci. 120 772-81

[8] Schnetzler B M, Boller S, Debray S, Bouzakri K, Meier D T and Prazak R 2009 Endocrinology 150 5218-29

[9] He Y, Hara H, and Nunez G 2016 Cell 41 1012-21

[10] Agostino L, Martinon, F, Burns K, McDermott M F, Hawkins P N and Tschopp J 2004 Immunity 20 319-25

[11] Church L D, Cook G P, and McDermott M F 2008 Nat Clin Pract Rheumatol. 4 34-42

[12] Ren K and Torres R 2009 Brain Res. 60 57-64

[13] Kim M H, Kang S G, Park J H, Yanagisawa M and Kim C H 2013 Gastroenterology 145 396-406

[14] Macia L, Tan J, Vieira A T, Leach K, Stanley D, and Luong S 2015 Nat Commun. 6 6734

[15] Comalada M, Bailon E, de-Haro O, Lara-Villoslada F, Xaus J and Zarzuelo A 2006 J Cancer Res Clin Oncol. 132 487-97

[16] Donohoe D R, Collins L B, Wali A, Bigler R, Sun W and Bultman S J 2001 Mol Cell. 48 612-26

[17] Hurst N R, Kendig D M, Murthy K S and Grider J R 2014 J Neurogastroenterol Motil. 26 1586-96

[18] Segain J, de la Bletiere D R, Bourreille A, Leray V, Gervois N and Rosales C 2000 Gut. 47 397-403.

[19] Canani R B, Costanzo M D, Leone L, Pedata M, Meli R and Calignano A 2011 World J Gastroenterol. 17 1519–28

[20] Ochoa E C, Ortega K H, Ferrera P, Morimoto S and Arias C 2014 J Cereb Blood Flow Metab. 34 1001-08

[21] Dinarello C A 2011 Blood 117 3720-32

[22] Bauernfeind F, Horvath G, Stutz A, Alnemri E S, MacDonald K and Speert D 2009 J Immunol. 183 787-91

[23] Israel A 2010 Cold Spring Harb Perspect Biol. 2 a000158

[24] Morrison D J and Preston T 2016 J Gut Microbes.7 189-200

[25] Ohira H, Fujioka Y, Katagiri C, Yano M, Mamoto R and Aoyama M 2012 J Clin Biochem Nutr. 50 59-66

[26] Chang P V, Hao L, Offermanns S and Medzhitov R 2014 Proc Natl Acad Sci. 111 2247- 52

[27] McKenna S, Butler B, Jatana K, Ghosh S and Wright C J 2017 Pediatr Res. 82 1064-72

[28] Morrison D J and Preston T 2016 Gut Microbes. 7 189-200

[29] Besten G D, Eunen K V, Groen A K, Venema K D, Reijngoud K J and Bakker B M 2013 J Lipid Res. 54 2325-40