Thermodynamics of Dissociation and Micellization of Sodium Surfactant Solutions in Formamide

Abstract

Electrical conductivity and surface tension measurement of sodium surfactants, such as sodium caprylate, sodium laurate, sodium palmitate and sodium stearate, in formamide has been determined at different temperatures. The methods show that micelles are formed in formamide solution. Critical micelle concentration (CMC) has been determined for each of the sodium surfactants. The result show that these surfactants behave as a weak electrolyte in dilute solution of formamide below the critical micellar concentration, and the conductance result can be explained on the basis of Ostwald’s formula and Debye–Huckle’s theory of weak electrolytes. The dissociation constant and thermodynamic parameters for dissociation and micellization processes of these surfactants are also evaluated. The micellization process has been found to be predominant over the dissociation process.



Keywords: Critical Micelle Concentration (CMC), Micellization, Conductivity, Dissociation, Thermodynamics, Surface Tension

References
[1] J. M. Corkill, F Goodman, Adv. Colloid Interface Sci., 2(1969) 297.


[2] T. Walker, J. Colloid Interface Sci., 45 (1973) 372.


[3] J. M. Corkill, J. F. Goodman, R. Ha Ottewill, Trans, Faraday Soc. 57 (1961) 1627.


[4] A. E. Ellison, W. A. Zisman, J.Phys. Chem., 63 (1959) 1121.


[5] N. L. Jarvis, W. A. Zisman, J. Phys. Chem., 64 (1960) 150.


[6] J. W. Belton, M. G. Evans, Trans, Faraday Soc., 41 (1945) 1.


[7] I. Rico, A. Lattes, J. Phys. Chem., 90 (1986) 5870.


[8] M. Almgren, S. Swarup, J. E. Loforth, J. Phys. Chem., 89 (1985) 4621.


[9] A. Couper, G. P. Gladden, B. Ingram Faraday Discuss. Chem. Soc., 59 (1975) 63.


[10] S. Prasad, R. C. Srivastava, J. Ind. Chem., 39 (1962) 9.


[11] W. U. Malik, S. L. Ahmad, Kolloid 2. Z. Polym., 234 (1969) 1045.


[12] K. N. Mehrotra, S. Singh, A. Kumar, Ind. J. Chem.,31 (1992) 756.


[13] R. P. Varma, R. Dayal, J. Am. Oil Chem. Soc.,53 (1976) 39.


[14] R.P. Varma, K. Singh, H. Singh, Bull. Chem. Soc., Japan 51 (1978)1530.


[15] K. N. Mehrotra, K. Tandon, J. Electrochem. Soc., India 39 (1990) 143.


[16] K. N. Mehrotra, K. Tandon, M. K. Rawat, Bull, Electrochem.7 (1991) 237.


[17] K. N. Mehrotra, V. P. Mehta, T. N. Nagar, Cellul. Chem. Tachnol. 7 (1973) 287.


[18] K. N. Mehrotra, S. K. Upadhyaya, I. A Oil Chem. Soc., 67 (1990) 464.


[19] K. N. Mehrotra, S. K. Upadhyaya, Colloi Polym. Sci., 267 (1989) 741.


[20] H.Topallar, Baograk, M. lscan, J. Am. Chem. Soc., 74 (1997) 793, Turk. J. Chem., 21(1997) 195, Turk. J. Chem., 22 (1998)167; Turk. J. Chem., 23 (1999) 31.


[21] J. A. Riddick, W. B. Unger, Techniques of Chemistry, Vol. II Wiley Interscience, New York,1970, p. 444.


[22] Handbook of Chemistry and Physics, 63 Edn. CRC Press, Boca Raton, FL 1982/1983.


[23] M. S. Akhter, S. M. Alawi, Colloids and surfaces, 196 (2002) 163.


[24] .M. S. Akhter, S. M. Alawi, Colloids and surfaces, 219 (2003) 281.


[25] S. M. Alawi, M. S. Akhter, Colloids and surfaces, 72 (2010) 295.


[26] S. M. Alawi, M. S. Akhter, J. Mol. Liq., 160 (2011) 63.


[27] S. M. Alawi, M. S. Akhter, J. Korean chem. Soc., 55 (2011)163.


[28] P. Mukerjee, K. J. Mysels, Critical micelle concentration of aqueous surfactant systems. NSRDS - NBS 36. Washington, D.C. U.S. Government Printing Office, 1971.


[29] H. Garibi, R. Palepu, G. J. T. Tiddy, D.G. Hall, E. Wyne-Jones, J. Chem. Soc. Chem., Commun. 2 (1990) 115.


[30] P. Bacher, M. J. Schick. (Ed.) In Non ionic Surfactants, p. 478, Dekker, New York (1967)


[31] R. Deer, E. H, Eylar, E. W. Anacker, J. Chem. 75 (197) 369.


[32] P. Molyneux, C. T. Rhodes, J. Swarbrick, Trans. Faraday Soc., 61 (1965) 1043.