Optimization of Polymerase Chain Reaction to Overcome Contamination of Deionized Water and Plumbing Premises By Pseudomonas spp. in Molecular Biology Laboratory

Abstract

The purpose of the current study is to introduce specific optimization steps to overcome non-specific binding of primers to contaminating DNA. The applied modifications provide applicable solutions especially if large number of primer aliquots were contaminated and the cost to replace them is high. Several steps were taken
to achieve complete mitigation of non-specific binding: reducing the concentration of both forward and reverse primers, reduction in the total number of PCR cycles from 35 to 25, increasing the annealing temperatures, doing filter sterilizations (0.2 µm Thermo Scientific polyethersulfone membrane) for the deionized water (DI) used in PCR and in certain cases reducing the extension time. The optimization steps carried in this work were successful in eliminating non-specific binding of primers to contaminating DNA found in primer aliquots.



Keywords: Plumbing Premises, Water Contamination, PCR, Pseudomonas, Deionized Water

References
[1] Favero, M. S., N. J. Petersen, L. A. Carson, W. W. Bond, and S. H. Hindman. Gramnegative water bacteria in hemodialysis systems. Health Lab. Sci. 12 321-334., (1975).


[2] White, D. C., and M. W. Mittleman. in In Proceedings of the Ninth Annual Semiconductor Pure Water Conference, 17 and 18 January 1990, Santa Clara, Calif. 150-171.


[3] Matsuda, N., W. Agui, T. Tougou, H. Sakai, K. Ogino, and M. Abe. Gram-negative bacteria viable in ultrapure water isolated from ultrapure water and effect of temperature on their behavior. Colloids Surf. B Biointerfaces. 5 279-289, (1996).


[4] Kulakov LA, M. M., Ogden KL, Larkin MJ, O’Hanlon JF. Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol. 68 1548–1555, (2002).


[5] Raja, C. E. A., Kolandaswamy; Selvam, Govindan Sadasivam. Isolation and Characterization of A Metal resistant Pseudomonas Aeruginosa Strain. World Journal of Microbiology and Biotechnology. 22 (6), 577-585, (2006).


[6] Hihgsmith, A. K. A., R.L. Evaluation of most-probable-number technique for the enumeration of Pseudomonas aeruginosa. Appl. Microbiol. 30 596–601., (1975).


[7] Grabow WOK, H. C. a. C. P. Evaluation of standard and modified M-FC, MacConkey, and Teepol media for membrane filteration counting of faecal coliforms in water. Appl Environ Microbiol. 42 192-199, (1981).


[8] T, C. High primer concentration improves PCR amplification from random pools. Nucleic Acids Res. 24 985–986, (1996).


[9] Salter S, C. M., Turek EM, Calus S, Moffatt M, Turner P, Parkhill J, Loman NJ and Walker AW. Reagent contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12 87, (2014).


[10] Drexler., C. C. U. a. H. G. in Methods in Molecular Biology Vol. 946 1–13 (2013).


[11] Hennessy L. K., T. J. a. K. C. &. PCR conditions and DNA denaturants affect reproducibility of single-strand conformation polymorphism patterns for BRCA1 mutations. Clin. Chem. 44 879–882, (1998).


[12] Bell, D. A., & DeMarini, D. Excessive cycling converts PCR products to random-length higher molecular weight fragments. Nucleic Acids Reseach. 19 5079, (1991).


[13] Rand KH, H. H. Taq polymerase contains bacterial DNA of unknown origin. Mol Cell Probes. 4 445–450, (1990).


[14] Deragon JM, S. D., Mitchell G, Potier M, Labuda D. Use of gamma irradiation to eliminate DNA contamination for PCR. Nucleic Acids Res. 18 6149., (1990).


[15] Sarkar G, S. S. Shedding light on PCR contamination. Nature. 343 27, (1990).


[16] Hughes MS, B. L., Skuce RA. Identification and elimination of DNA sequences in Taq DNA polymerase. J Clin Microbiol. 32 2007–2008, (1994).


[17] Corless CE, G. M., Borrow R, Edwards-Jones V, Kaczmarski EB, Fox AJ. Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol. 38 1747–1752., (2000).


[18] Klaschik S, L. L., Raadts A, Hoeft A, Stuber F. Comparison of different decontamination methods for reagents to detect low concentrations of bacterial 16S DNA by real-time-PCR. Mol Biotechnol. 22 231–242, (2002).


[19] Tamariz J, V. K., Prinz M, Caragine T. The application of ultraviolet irradiation to exogenous sources of DNA in plasticware and water for the amplification of low copy number DNA. J Forensic Sci. 51 790–794, (2006).


[20] Vaishampayan P, P. A., La Duc MT, Bargoma E, Benardini JN, Andersen & GL, V. K. New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J. 7 312–324., (2013).