Halotolerant N-Fixing Bacteria Isolates for Increasing the Biochemical Activity, Total Bacteria Population, N-Uptake and Rice Seedling Growth

Abstract

Rice farming is hampered by saline soil, which contains a large amount of soluble salt. The high salt content inhibits plant growth and causes nitrogen nutrient deficiency, as well as sodium and chlorine ion poisoning. Beneficial microbes that have adapted to saline ecosystems (halotolerant) can reduce salinity’s impact on rice growth. Microorganisms known as halotolerant bacteria can survive in high salt environments by maintaining an osmotic balance. The use of halotolerant N-fixing bacteria (HNB) as biofertilizers is an attempt to boost nitrogen nutrients and rice plant productivity in saline land. The goal of this study was to see how effective HNB isolates were at increasing rice plant growth. The experiment was conducted in the greenhouse of Universitas Padjadjaran’s Faculty of Agriculture, using a randomized block design with 16 treatments (control, single, and consortia of inoculant) and was repeated three times. Rice seedlings were inoculated with HNB isolates and grown in a Fahraeus saline medium. The HNB consortium application increased plant height by 9.03 cm, root-shoot ratio by 0.92, IAA content by 0.475 g/mL, nitrogen content by 2.94%, and the total number of HNB isolates (Azotobacter, Azospirillum, Bacillus, and Stenotrophomonas) by 8.10x107 CFU/mL.


Keywords: Biofertilizer, consortia inoculum, N-fixing bacteria, rice seedling

References
[1] Sipayung R. Stres garam dan mekanisme toleransi tanaman. Fakultas Pertanian Jurusan Budidaya Pertanian Universitas Sumatera Utara, Medan; 2003.

[2] Puvanitha S, Mahendran S. Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Scholars Journal of Agriculture and Veterinary Sciences. 2017;4(4):126-131.

[3] Muscolo A, Panuccio MR, Sidari M. Effects of salinity on growth, carbohydrate metabolism and nutritive properties of kikuyu grass (Pennisetum clandestinum Hochst). Plant Science. 2003;164(6):1103-1110.

[4] Diacono M, Montemurro F. Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture. 2015;5:221–230. https://doi.org/10.3390/ agriculture5020221

[5] Numan M, Bashir S, Khan Y et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological. Research. 209(2018):21–32. https://doi.org/10.1016/j.micres.2018.02.003, 2018

[6] Kang SM, Shahzad R, Bilal S et al. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC. Microbiology. 2019;19:80:1-14. https://doi.org/10.1186/s12866-019-1450-6. 2019

[7] Egamberdieva WS, Bellingrath-Kimura SD, Mishra J, Arora NK. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology. 2019;10:2791:1-18. https://doi.org/10.3389/fmicb.2019.02791. 2019.

[8] Marwanto S, Rachman A, Erfandi D, Subiksa IGM. Tingkat salinitas tanah pada lahan sawah intensif di Kabupaten Indramayu, Jawa Barat. Bogor: Balai Penelitian Tanah; 2009.

[9] Munns R. Comparative physiology of salt and water stress. Plant Cell Environment. 2002;25:239-250.

[10] Nugaheni TN, Solichatun, Anggarwulan E. Pertumbuhan dan akumulasi prolin tanaman orok-orok (Crotalaria juncea L.) pada salinitas CaCl2 berbeda. BioSMART Jurnal Ilmiah BioSmart. 2003;5(2):98-101.

[11] Widyawati I, Sugiyanta, Junaedi A, Widyastuti R. Peran HNB untuk mengurangi dosis pupuk N anorganik pada padi sawah. J. Agon Indones Jurnal Agronomi Indonesia. 2014;42(2):96-102.

[12] Marihati, Harihastuti N, Muryati, Nilawati, Eddy S, Danny WH. Penggunaan bakteri halofilik sebagai biokatalisator untuk meningkatkan kualitas dan produktifitas garam NaCl di meja kristalisasi. Jurnal Riset Industri ( Journal of Industrial Research). 2014;8(3):191-196.

[13] Association of Official Analytical Chemist (AOAC). Official methods of analysis. 19th ed. Washington DC: Association of Official Analytical Chemist; 2012.

[14] Rahman A, Sitepu IR, Tang S-Y, Hashidoko Y. Salkowski’s reagent test as a primary
screening index for functionalities of rhizobacteria isolated from wild dipterocarp
saplings growing naturally on medium-strongly acidic tropical peat soil. Bioscince
Biotechnology Biochemistry. 2010;74(11):2202–2208.

[15] Kurniasih B, Indradewa D, Melasari. Hasil dan sifat perakaran varietas padi gogo
pada beberapa tingkat salinitas. Jurnal Ilmu Pertanian. 2002;9(1):1-10.

[16] Bandi AA, Sumono M, Kajian AP. Pengaruh lama penggenangan terhadap kualitas
air dan sifat fisik tanah andosol serta pertumbuhan tanaman tomat (Lycopersicum
esculentum Mill.). Jurnal Rekayasa Pangan dan Pertanian. 2014;2(1).

[17] Cahyaty R. Pengaruh bakteri rhizosfer toleran salin terhadap tanaman mentimum
pada tanah salin. Malang: Fakultas Pertanian Universitas Brawijaya; 2017.

[18] Sarawa, Baco AR. Partisi fotosintat beberapa kultivar kedelai (Glycine max. (L.) Merr.)
pada ultisol. Jurnal Agroteknos. 2014;4(3):152-159.

[19] Lizawati, Novita T, Purnamaningsih R. Induksi dan multiplikasi tunas jarak pagar
(Jatropha curcas L.) secara in vitro. Jurnal Agronomi Indonesia. 2009;37(1):78–85.
2009.

[20] Su YH, Liu YB, Zang XS. Auxin-cytokinin interaction regulates meristem development. Molecular Plant. 2011;28:1-10.

[21] Yamada T. The role of auxin in plant - Disease development. Annual Review of
Phytopathology. 1993;31:253-257.

[22] Aini N, Yamika WSD, Aini LQ, Azizah N, Sukmarani E. Pengaruh rhizobacteria pada
pertumbuhan dan hasil tanaman bawang merah (Allium ascolanicum L.) pada kondisi
salin. Jurnal Hortikultura Indonesia. 2019;10(3):182-189.

[23] Ruhnayat A. Penentuan kebutuhan pokok unsur hara N, P, K untuk pertumbuhan
tanaman panili (Vanilla planifolia Andrews). Buletin Penelitian Tanaman Rempah
dan Obat. 2007;18(1):49-59.

[24] Karasawa T, Kasahara Y, Takebe M. Variable response of growth and arbuscular
mycorrhizal colonization of maize plants to preceding crops in various types of soils.
Biology and Fertility of Soils. 2001;33:286-293.

[25] Jones JB, Wolf B, Mills HA. Plant analysis handbook: A practical sampling,
preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc. Athens;
1991.

[26] Zahran HH, Ahmad MS, Afkar EA. Isolation and characterization of N fixing moderate
halophilic bacteria from saline soils of Egypt. Journal of Basic Microbiology.
1995;35:269-275.

[27] Miliute I, Buzaite O, Baniulis D, Stanys V. Bacterial endophytes in agricultural
crops and their role in stress tolerance: A review. Zemdirbyste-Agriculture.
2015;102(4):465–478.

[28] Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends in
Microbiology. 2016;24(10):833-845.

[29] Gunawan SG. Farmakologi dan terapi. Jakarta: Badan Penerbit Fakultas Kedokteran
Universitas Indonesia; 2011.

[30] Li P-S, Kong W-L, Wu X-Q. Salt tolerance mechanism of the rhizosphere bacterium
JZ-GX1 and its effects on tomato seed germination and seedling growth. Frontiers
in Microbiology. 2021;12:657238:1-12. https://doi.org/10.3389/fmicb.2021.657238

[31] Weinisch L, Ku¨hner S, Roth R et al. Identification of osmoadaptive strategies in the
halophile, heterotrophic ciliate Schmidingerothrix salinarum. PLoS PLOS Biology.
2018;16(1):1-29.