A Mixed Experimental-numerical Energy-based Approach for Fatigue Life Assessment in Notched Samples under Multiaxial Loading


This paper presents a methodology to predict the fatigue lifetime in notched geometries subjected to multiaxial loading on the basis of the cumulated strain energy density. The modus operandi consists of defining an energy-based fatigue master curve that relates the cumulated strain energy density with the number of cycles to failure using standard cylindrical specimens tested under low-cycle fatigue conditions. After that, an elastic-plastic finite-element model representative of the material behaviour, notched geometry and multiaxial loading scenario is developed and used to account for the strain energy density at the crack initiation site. This energy is then averaged using the Theory of Critical Distances and inserted into the energy- based fatigue master curve to estimate the lifetime expectancy. Overall, the comparison between the experimental and predicted fatigue lives has shown a very good agreement.

Keywords: Multiaxial fatigue, Fatigue life prediction, Strain energy density

[1] Mayyas, A.; Qattawi, A.; Omar, M.; Shana, D.: “Design for sustainability in automotive industry: a comprehensive review”. Renew. Sust. Energ. Rev., Vol.16 (2012) pp. 1845–62.

[2] Schmitt, J.H.; Iung, T.: “New developments of advanced high-strength steels for automotive applications”. C. R. Physique Vol. 19 (2018) pp. 641–656.

[3] Carpinteri, A.; Spagnoli, A.; Vantadori, S.; Viappiani, D.: “A multiaxial criterion for notch high-cycle fatigue using a critical-point method”. Eng. Fract. Mech. Vol. 75 (2008) pp. 1864– 1874.

[4] Zhu, S.P.; Liu, Y.; Liu, Q.; Yua, Z.Y.: “Strain energy gradient-based LCF life prediction of turbine discs using critical distance concept”. Int. J. Fat. Vol. 113 (2018) pp. 33–42.

[5] Taylor, D.; “Geometrical effects in fatigue: a unifying theoretical model”. Int. J. Fatigue Vol. 21 (1999) pp. 413–420.

[6] Molski, K; Glinka, G.: ”A method of elastic–plastic stress and strain calculation at a notch root”. Mater. Sci. Eng. Vol. 50 (1981) pp. 93–100.

[7] Golos, K.; Ellyin, F.: ”Generalization of cumulative damage criterion to multilevel cyclic loading”. Theoret. Appl. Fract. Mech. Vol. 7 (1987) pp. 169–176.

[8] Lazzarin, P.; Zambardi, R.: ”A finite-volume-energy based approach to predict the static and fatigue behaviour of components with sharp V-shaped notches”. Int. J. Fract. Vol. 112 (2001) pp. 275–298.

[9] Berto, F.; Lazzarin, P.: ”A review of the volume-based strain energy density approach applied to V- notches and welded structures”. Theoret. Appl. Fract. Mech. Vol. 52 (2009) pp. 183–194.

[10] Neuber, H.: ”Theory of notch stresses: principles for exact calculation of strength with reference to structural form and material”. Springer, Berlin, Germany, 1958.

[11] Peterson, R.E.: ”Notch sensitivity”. in: G. Sines, J.L. Waisman (Eds.), Metal Fatigue, McGraw Hill, New York, 1958, pp. 293–306.

[12] Susmel, L.: ”The theory of critical distances: a review of its applications in fatigue”. Eng. Fract. Mech. Vol. 75 (2008) pp. 1706–1724.

[13] Branco, R.; Costa, J.D.; Berto, F.; Antunes, F.V.: “Fatigue life assessment of notched round bars under multiaxial loading based on the total strain energy density approach”. Theo. Appl. Fract. Mech. Vol. 97 (2018) pp. 340–348.

[14] Branco, R.; Prates, P.A.; Costa, J.D.; Borrego, L.P.; Antunes, F.V.: “Rapid assessment of multiaxial fatigue lifetime in notched components using an averaged strain energy density approach”. Int. J. Fat. Vol. 124 (2019) pp. 89–98.

[15] Menezes, L.F.; Teodosiu, C.: “Three-dimensional numerical simulation of the deep drawing process using solid finite elements”. J. Mater. Proc. Technol. Vol. 97 (2000) pp. 100– 106.

[16] Dutta, K.; Divya Bharathi, K.: ”Effect of prior ratcheting deformation on low cycle fatigue behaviour of AISI 4340 steel”. Lecture Notes in Mechanical Engineering. Fracture, Fatigue and Wear (2019) pp. 759-767, Springer, Singapore.

[17] Branco, R.; Costa, J.D.; Antunes, F.V.: ”Low-cycle fatigue behaviour of 34CrNiMo6 high strength steel”. Theo. Appl. Fract. Mech. Vol. 58 (2012) pp. 28-34.

[18] Li, D.; Nam, W.; Lee, C.: ”A strain energy-based approach to the low-cycle fatigue damage mechanism in a high-strength spring steel”. Metall. Mater. Trans. A Vol. 29 (1998) pp. 1431-1439.

[19] Callaghan, M.; Humphries, S.; Law, M.; Ho, M.; Bendeich, P.; Li, H.; Yeung W.: Energy- based approach for the evaluation of low cycle fatigue behaviour of 2.25Cr–1Mo steel at elevated temperature. Mater. Sci. Eng. A Vol. 527 (2010) pp. 5619-5623.

[20] Branco, R.; Costa, J.D.; Antunes, F.V.: ”Fatigue behaviour and life prediction of lateral notched round bars under bending–torsion loading”. Eng. Fract. Mech. Vol. 119 (2014) pp. 66- 84.

[21] F. Ellyin. Fatigue damage, crack growth and life prediction. Chapman Hall, London, UK, 1997.