Qualitative Approach for Assessing Runoff Temporal Dependence Through Geometrical Symmetry


Currently, noticeable changes in traditional hydrological patterns are being observed on the short and medium-term. These modifications are adding a growing variability on water resources behaviour, especially evident in its availability. Consequently, for a better understanding/knowledge of temporal alterations, it is crucial to develop  new analytical strategies which are capable of capturing these modifications on its temporal behaviour. This challenge is here addressed via a purely stochastic methodology on annual runoff time series. This is performed through the propagation of temporal dependence strength over the time, by means of Causality, supported by Causal Reasoning (Bayes’ theorem), via the relative percentage of runoff change that a time-step produces on the following ones. The result is a dependence mitigation graph, whose analysis of its symmetry provides an innovative qualitative approach to assess time-dependency from a dynamic and continuous perspective against the classical, static and punctual result that a correlogram offers. This was evaluated/applied to four Spanish unregulated river sub-basins; firstly on two Douro/Duero River Basin exemplary case studies (the largest river basin at Iberian Peninsula) with a clearly opposite temporal behaviour, and subsequently applied to two watersheds belonging to Jucar River Basin (Iberian Peninsula Mediterranean side), characterised by suffering regular drought conditions.

Keywords: Causal reasoning, Theorem of Bayes, Temporal dependence propagation, Runoff time series, Water resources management

[1] K. E. Trenberth, ”Changes in precipitation with climate change,” Climate Research, vol. 47, (1-2), pp. 123-138, 2011.

[2] J. L. Molina and S. Zazo, ”Causal Reasoning for the Analysis of Rivers Runoff Temporal Behavior,” Water Resour. Manage., vol. 31, (14), pp. 4669-4681, July 2017.

[3] J. L. Molina and S. Zazo, ”Assessment of Temporally Conditioned Runoff Fractions in Unregulated Rivers,” J. Hydrol. Eng., vol. 23, (5), pp. 04018015, 2018.

[4] S. Zazo et al, ”Flood hazard assessment supported by reduced cost aerial precision photogrammetry,”Remote Sensing, vol. 10, (10), pp. 1566, 2018.

[5] M. I. Jyrkama and J. F. Sykes, ”The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario),” Journal of Hydrology, vol. 338, (3-4), pp. 237-250, May 2007.

[6] R. Voss, W. May and E. Roeckner, ”Enhanced resolution modelling study on anthropogenic climate change: Changes in extremes of the hydrological cycle,” Int. J. Climatol., vol. 22, (7), pp. 755-777, June 2002.

[7] J. L. Molina et al, ”Innovative Analysis of Runoff Temporal Behavior through Bayesian Networks,” Water, vol. 8, (11), pp. 484, November 2016.

[8] E. Romano et al, ”Generating synthetic time series of springs discharge in relation to standardized precipitation indices. Case study in Central Italy,” Journal of Hydrology, vol. 507, pp. 86-99, December 2013.

[9] J. L. Molina, S. Zazo and A. M. Martín-Casado, ”Causal Reasoning: Towards Dynamic Predictive Models for Runoff Temporal Behavior of High Dependence Rivers,” Water, vol. 11, (5), pp. 877, 2019.

[10] X. Kong et al, ”Risk analysis for water resources management under dual uncertainties through factorial analysis and fuzzy random value-at-risk,” Stochastic Environmental Research and Risk Assessment, pp. 2265-2280, 2017.

[11] J. Pearl, ”Causality: models, reasoning, and inference. 2nd edn Cambridge University Press,” New York,2009.

[12] S. Zazo, ”Analysis of the Hydrodynamic Fluvial Behaviour through Causal Reasoning and Artificial Vision.” Doctoral Thesis, University of Salamanca, Salamanca, SPAIN, 2017.

[13] MITECO. Ministerio Para la Transición Ecológica. Gobierno de España. [Online]. Available: https://www. miteco.gob.es/es/agua/temas/seguridad-de-presas-y-embalses/desarrollo/ [Accessed: Oct. 30, 2018].

[14] M. de Castro, J. Martín-Vide and S. Alonso, ”El clima de España: pasado, presente y escenarios de clima para el siglo XXI,” Evaluación Preliminar De Los Impactos En España Por Efecto Del Cambio Climático, pp. 1-64, 2005.

[15] N. Cortesi, ”Variabilidad De La Precipitación En La Península Ibérica.” Doctoral Thesis, University of Zaragoza, Zaragoza, SPAIN, 2013.

[16] E. Vallarino et al, Tratado Básico De Presas. Tomo I: Generalidades - Presas De Hormigón Y De Materiales Sueltos. Colección SENIOR Nº 11. (5ª edición ed.) Madrid: Colegio de Ingenieros de Caminos, Canales y Puertos, 2001.

[17] MITECO. Ministerio Para la Transición Ecológica. Gobierno de España. [Online]. Available: https://sig. mapama.gob.es/redes-seguimiento/ [Accessed: Oct. 30, 2018].

[18] CHJ. Confederación Hidrográfica del Júcar. Ministerio Para la Transición Ecológica. Gobierno de España. [Online]. Available: https://www.chj.es/es es/medioambiente/cuencahidrografica/ [Accessed: Jan. 8, 2019].

[19] H. Macian-Sorribes, M. Pulido-Velazquez and A. Tilmant, ”Definition of efficient scarcity- based water pricing policies through stochastic programming,” Hydrology and Earth System Sciences, vol. 19, (9), pp. 3925-3935, 2015.

[20] Vidiani. Maps of all countries in one place. [Online]. Available: http://www.vidiani.com/large-detailed- satellite-map-of-spain/ [Accessed: Jun. 16, 2019].

[21] CEDEX, ”Evaluación del impacto del Cambio Climático en los recursos hídricos y sequías de España,” vol. Tomo Único, July 2017.

[22] B. C. Trewin, ”Función de las normales climatológicas en un clima cambiante,” Programa Mundial De Datos Y Vigilancia Del Clima. Documento WCDMP,(61), 2007.

[23] HUGIN, ”Hugin Expert A/S, version 7.3”. Aalborg, DENMARK: Hugin Expert, http://www.hugin.com, 2010.