Parametric Study of a Plunging NACA0012 Airfoil


Natural flight has always been the source of imagination for  the  Human being, but reproducing the propulsive systems used by animals is indeed complex. New challenges in today’s society have made biomimetics gain a lot of momentum because of the high performance and versatility these systems possess when subjected to  the low Reynolds numbers effects. The main objective of the present work is the computational study of the influence of the Reynolds number, frequency and amplitude of the oscillatory movement of a NACA0012 airfoil in the aerodynamic performance for a constant angle of attack over time. The thrust and power coefficients are obtained which together are used to calculate the propulsive efficiency. The simulations were performed using ANSYS Fluent with a RANS approach for Reynolds numbers between 8,500 and 34,000, reduced frequencies between 1 and 5, and Strouhal numbers from 0.1 to 0.4. The aerodynamic parameters were widely explored as well as their interaction, obtaining optimal operational condition zones for the different Reynolds numbers studied.

Keywords: Plunging, Airfoil, CFD, Aerodynamic coefficients, Biomimicry

[1] Lee J.-S.,; Kim, C.; Kim, K.H., ”Design of Flapping Airfoil for Optimal Aerodynamic Performance in Low-Reynolds,” AIAA Journal, vol. 44, p. 1960–1972, 2006.

[2] Barata, J. M. M.; Neves, F. M. S. P.; Manquinho, P. A. R., ”Comparative Study of Wing’s Motion Patterns on Various Types of Insects on Resemblant Flight Stages,” in AIAA Science and Technology Forum 2015, Kissimmee, Florida, USA, 05/09 January 2015.

[3] Barata, J. M. M.; Manquinho, P. A. R.; Neves, F. M. S. P.; Silva, T. J. A., ”Propulsion for Biological Inspired Micro-Air Vehicles (MAVs),” in ICEUBI, International Conference on Engineering, Engineering for Society, Covilhã, 02/04 December 2015.

[4] Barata, J. M. M.; Manquinho, P. A. R.; Neves, F. M. S. P.; Silva, T. J. A., ”Propulsion for Biological Inspired Micro-Air Vehicles (MAVs),” Open Journal of Applied Sciences, vol. 66, no. 1, pp. 7-15, 2016.

[5] Vuruskan, A.; Fenercioglu, I.; Cetiner, O., ”A study on forces acting on a flapping wing,” EPJ Web of Conferences, vol. 45, 2013.

[6] Platzer, M. F.; Jones, K. D.; Young, J.; Lai, J. C. S., ”Flapping Wing Aerodynamics - Progress and Challenges,” AIAA Journal, 2007.

[7] Knoller, R.; Verein, Ö. F., ”Die Gesetze des Luftwiderstandes,” Verlag des Österreichischer Flugtechnischen Vereines, 1909.

[8] Betz, A., ”Ein Beitrag zur Erklärung des Segelfluges,” Z Flugtech Motorluftschiffahrt, 1912.

[9] Katzmayr, R, ”Effect of periodic changes of angle of attack on behavior of airfoils,” NACA Report 147,1922.

[10] von Kármán, T.; Burgers, J.M., ”Aerodynamic Theory: General aerodynamic theory: Perfect fluids,” J. Springer, vol. 2, 1935.

[11] Freymuth, P., ”Propulsive Vortical Signatures of Plunging and Pitching Airfoils,” AIAA Journal, vol. 26, pp. 881-883, 1988.

[12] Jones, K. D.; Dohring, C. M.; Platzer, M. F., ”Experimental and Computational Investigation of the Knoller- Betz Effect,” AIAA Journal, vol. 36, p. 1240–1246, 1998.

[13] Koochesfahani, M. M., ”Vortical Patterns in the Wake of an Oscillating Airfoil,” AIAA Journal, vol. 27, pp. 1200-1205, 1989.

[14] Tuncer, I. H.; Platzer, M. F., ”Computational Study of Flapping Airfoil Aerodynamics,” AIAA Journal of Aircraft, vol. 37, 2000.

[15] Garrick, I.E., ”Propulsion of a Flapping and Oscillating Aerofoil,” NACA Report No. 567., 1936.

[16] Theodorsen, T., ”General Theory of Aerodynamic Instability and the Mechanism of Flutter,” NACA 1940,1940.

[17] Lai, J. C. S.; Platzer, M. F., ”Jet Characteristics of a Plunging Airfoil,” AIAA Journal, vol. 37, pp. 1529-1537, 1999.

[18] Lewin, G. C.; Haj-Hariri, H., ”Modelling Thrust Generation of a Two-Dimensional Heaving Airfoil in a Viscous Flow,” Journal of Fluid Mechanics, vol. 492, p. 339–362, 2003.

[19] Young, J., Numerical Simulation of the Unsteady Aerodynamics of Flapping Airfoils, The University of New South Wales, 2005.

[20] Young, J.; Lai, J. C. S., ”Vortex Lock-in Phenomenon in the Wake of a Plunging Airfoil,” AIAA Journal,vol. 45, pp. 485-490, 2007.

[21] Tuncer, I. H.; Platzer, M. F., ”Thrust Generation due to Airfoil Flapping,” AIAA Journal, vol. 34, pp. 324-331, 1996.

[22] Schmidt, W., ”Der Wellpropeller, ein neuer Antrieb für Wasser-,Land-, und Luftfahrzeuge,” Zeitschrift für Flugwissenschaften, vol. 13, pp. 472-479, 1965.

[23] Jones, K. D.; Platzer, M. F., ”Numerical Computation of Flapping-Wing Propulsion and Power Extraction,”35th Aerospace Sciences Meeting \& Exhibit, 1997.

[24] Tuncer, I. H.; Walz, R.; Platzer, M. F., ”A Computational Study on the Dynamic Stall of a Flapping Airfoil,”16th Applied Aerodynamics Conference, AIAA, 1998.

[25] Young, J.; Lai, J. C. S., ”Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil,”AIAA Journal, vol. 42, pp. 2042-2052, 2004.

[26] Young, J.; Lai, J. C. S., ”Mechanisms Influencing the Efficiency of Oscillating Airfoil Propulsion,” AIAA Journal, vol. 45, p. 1695–1702, 2007.

[27] Taylor, G. K.; Nudds, R. L.; Thomas, A. L. R., ”Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency,” Nature (London), vol. 425, pp. 707- 711, 2003.

[28] ANSYS, Inc., ”ANSYS Fluent Theory Guide (Release 15.0),” 2013.