Performance Investigations of IEEE 802.11 a54 Mbps WPA2 Laboratory Links

Abstract

The increasing importance of wireless communications, involving electronic devices, has been widely recognized. Performance is a fundamental issue, resulting in more reliable and efficient communications. Security is also crucially important. Laboratory measurements are presented for several performance aspects of Wi-Fi IEEE 802.11a54 Mbps WPA2 point-to-point and four node point-to-multipoint links. Our study contributes to performance evaluation of this technology under WPA2 encryption, using available equipment (HP V-M200 access points and Linksys WPC600N adapters). New results are given from TCP and UDP experiments concerning TCP throughput versus TCP packet length, jitter and percentage datagram loss versus UDP datagram size. Comparisons are made to corresponding results for Open links. Conclusions are drawn about the comparative performance of the links.


Keywords: Wi-Fi, WLAN, IEEE 802.11a, Wireless network laboratory performance, Multi-Node WPA2 links

References
[1] Web site http://standards.ieee.org; IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11i, 802.11ac standards.

[2] Mark, J. W. and Zhuang, W. (2003). Wireless Communications and Networking. (New Jersey: Prentice- Hall).

[3] Rappaport, T. S. (2002). Wireless Communications Principles and Practice. (New Jersey: Prentice-Hall).

[4] Bruce W. R. and Gilster, R. (202). Wireless LANs End to End. (New York: Hungry Minds).

[5] Schwartz, M. (2005). Mobile Wireless Communications. (Cambridge: Cambridge University Press).

[6] Sarkar, N. and Sowerby, K. (2006). High Performance Measurements in the Crowded Office Environment: a Case Study. ICCT ’06-International Conference on Communication Technology. (Guilin, China), pp. 1-4.

[7] Boavida, F. and Monteiro, E. (2011). Engenharia de Redes Informáticas, (Lisbon: FCA-Editora de Informática Lda).

[8] Pacheco de Carvalho, J. A. R., Veiga, H., Gomes, P. A. J., et al (2010). Wi-Fi Point-to-Point Links- Performance Aspects of IEEE 802.11 a,b,g Laboratory Links. Electronic Engineering and Computing Technology, Series: Lecture Notes in Electrical Engineering, (Netherlands: Springer), vol. 60, pp. 507- 514.

[9] Pacheco de Carvalho, J. A. R., Veiga, H., Ribeiro Pacheco, C. F., and Reis, A. D. (2016). Extended Performance Research on Wi-Fi IEEE 802.11 a, b, g Laboratory Open Point-to-Multipoint and Point-to- Point Links. Transactions on Engineering Technologies. (Singapore: Springer), pp. 475-484.

[10] Pacheco de Carvalho, J. A. R., Veiga, H., Marques, N., et al (2011). Wi-Fi WEP Point-to-Point Links- Performance Studies of IEEE 802.11 a,b,g Laboratory Links. Electronic Engineering and Computing Technology, Series: Lecture Notes in Electrical Engineering. (Netherlands: Springer), vol. 90, pp. 105- 114.

[11] Pacheco de Carvalho, J. A. R., Veiga, H., Ribeiro Pacheco, C. F., and Reis, A. D. (2014). Extended Performance Studies of Wi-Fi IEEE 802.11a, b, g Laboratory WPA Point-to-Multipoint and Point-to- Point Links. Transactions on Engineering Technologies: Special Volume of the World Congress on Engineering 2013, (Gordrecht: Springer), pp. 455-465.

[12] Pacheco de Carvalho, J. A. R., Veiga, H., Ribeiro Pacheco, C. F., and Reis, A. D. (2014). Performance Evaluation of IEEE 802.11 a, g Laboratory WPA2 Point-to-Multipoint Links. Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress of Engineering 2014, (London: WCE 2014), pp. 699-704.


[13] Pacheco de Carvalho, J. A. R., Veiga, H., Marques, N., et al (2010). Performance Measurements of a 1550 nm Gbps FSO Link at Covilhã City, Portugal. Proc. Applied Electronics 2010 - 15th International Conference (University of West Bohemia, Czech Republic), pp. 235-239.

[14] Bansal, D., Sofat, S., Chawla, P., and Kumar, P. (2011). Deployment and Evaluation of IEEE 802.11 based Wireless Mesh Networks in Campus Environments. Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering 2011, (London: WCE 2011), pp. 1722-1727.

[15] Padhye J., Firoiu, V., Towsley, D., and Kurose, J. (1998). Modeling TCP Throughput: A Simple Model and its Empirical Validation. SIGCOMM Symposium Communications, Architecture and Protocols, pp. 304-314.

[16] Mathis, M., Semke, J. and Mahdavi, J. (1997). The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm. ACM SIGCOMM Computer Communication Review, vol. 27, issue 3, pp. 67-82.

[17] Pacheco de Carvalho, J. A. R., Veiga, H., Ribeiro Pacheco, C. F., and Reis, A. D. (2019). Extended Performance Research on 5 GHz IEEE 802.11n WPA2 Laboratory Links. Transactions on Engineering Technologies (Singapore: Springer), pp. 313-323.

[18] Pacheco de Carvalho, J. A. R., Veiga, H., Ribeiro Pacheco, C. F., and Reis, A. D. (2018). Performance Evaluation of IEEE 802.11a 54 Mbps WEP Laboratory Links. Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress of Engineering 2018. (London: WCE 2018), pp. 374-379.

[19] HP V-M200 802.11n access point management and configuration guide (2010) http://www.hp.com accessed 3 Jan 2019.

[20] AT-8000S/16 level 2 switch technical data (2009). http://www.alliedtelesis.com accessed 10 Dec 2018.

[21] WPC600N notebook adapter user guide(2008). http://www.linksys.com accessed 10 Jan 2012.

[22] Acrylic WiFi software (2016). http://www.acrylicwifi.com accessed 8 Jan 2019.

[23] Iperf software (2019). http://iperf.fr accessed 16 Feb 2019.

[24] Network Working Group. RFC 1889-RTP: A Transport Protocol for Real Time Applications. http://www. rfc-archive.org accessed 3 Jan 2019.

[25] Bevington, P. R. (1969). Data Reduction and Error Analysis for the Physical Sciences (New ork: McGraw- Hill).