Evaluación de la migración de bromuro de cetilpiridinio desde nanocompósitos activos hacia un simulante graso de alimentos/Cetylpyridinium bromide migration assessment from active nanocomposites to a fatty food simulant

Abstract

En los últimos años, el desarrollo de nanocompósitos poliméricos se plantea como una interesante alternativa para el diseño de nuevos materiales para el envasado activo de alimentos. A pesar de esto, existe constante preocupación relacionada a la migración de los componentes activos incorporados en el material ya que, un material de envasado destinado a entrar en contacto con un alimento debe presentar valores de migración bajo los límites establecidos en regulaciones internacionales. En este sentido, el objetivo del presente trabajo fue evaluar la migración del surfactante bromuro de cetilpiridinio (CPB) desde nanocompósitos activos de polietileno de baja densidad y montmorillonita modificada con CPB, hacia un simulante graso de alimentos (etanol 95 %). El seguimiento de la migración del componente se realizó a través de la medición de la conductividad eléctrica del simulante en contacto con los nanocompósitos. Se determinó que la presencia del 3,0 % de organoarcilla permite una mayor migración del CPB debido a la presencia del surfactante libre en la matriz y al hinchamiento de la organoarcilla superficial por hidratación. Además, se observó que la migración es prolongada en el tiempo y está por debajo de los límites permitidos por la legislación estadounidense, lo que permitiría la generación de materiales novedosos que podrían ser empleados en el diseño de envases activos de alimentos.


In the last years, the development of polymeric nanocomposites is presented as an interesting alternative for the design of new materials for active food packaging. Despite this, there are concerns regarding the migration of the components incorporated in the material since a packaging material intended to come into contact with food must have migration values under the limits established in international regulations. In this sense, the aim in this work was to evaluate the migration of the surfactant cetylpyridinium bromide (CPB) from active nanocomposites of low density polyethylene and motmorillonite modified with CPB to a fatty food simulant (ethanol 95 %). The migration of the component was followed by fat simulant electrical conductivity measurements during the contact with the nanocomposites. It was determined that materials with 3,0 % of organoclay allowed a higher migration of CPB due to the presence of free surfactant in the matrix and swelling of the superficial organoclay. In addition, it was observed that the migration is prolonged in time and it is below the limits allowed by US legislation, which would enable the generation of novel materials that could be used in the design of active food packaging.


Palabras clave: surfactante, conductividad eléctrica, polietileno de baja densidad, organoarcilla, envase activo de alimentos.


Keywords: surfactant, electrical conductivity, low density polyethylene, organoclay, food active packaging.

References
[1] Mlalila N, Kadam DM, Swai H, Hilonga A. 2016. Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques. J Food Sci Technol. 53(9):3395–3407.

[2] Realini CE, Marcos B. 2014. Active and intelligent packaging systems for a modern society. Meat Sci. 98(3):404–419.

[3] Bastarrachea L, Dhawan S, Sablani SS. 2011. Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review. Food Eng Rev. 3(2):79–93.

[4] De Jong AR, Boumans H, Slaghek T, Van Veen J, Rijk R, Van Zandvoort M. 2005. Active and intelligent packaging for food: Is it the future? Food Addit Contam. 22(10):975–979.

[5] Majeed K, Hassan A, Bakar AA, Jawaid M. 2016. Effect of montmorillonite (MMT) content on the mechanical, oxygen barrier, and thermal properties of rice husk/MMT hybrid filler-filled low-density polyethylene nanocomposite blown films. J Thermoplast Compos Mater. 29(7):1003–1019.

[6] Rodríguez FJ, Torres A, Peñaloza Á, Sepúlveda H, Galotto MJ, Guarda A, et al. 2014. Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging. Food Addit Contam Part A. 31(3):342–353.

[7] Rodríguez FJ, Cortés LA, Guarda A, Galotto MJ, Bruna JE. 2015. Characterization of cetylpyridinium bromide-modified montmorillonite incorporated cellulose acetate nanocomposite films. J Mater Sci. 50(10):3772–3780.

[8] Seo J, Jeon G, Jang EuS, Bahadar Khan S, Han H. 2015. Preparation and properties of poly(propylene carbonate) and nanosized ZnO composite films for packaging applications. J Appl Polym Sci. 15;122(2):1101–1108.

[9] Shemesh R, Goldman D, Krepker M, Danin-Poleg Y, Kashi Y, Vaxman A, et al. 2015. LDPE/clay/carvacrol nanocomposites with prolonged antimicrobial activity. J Appl Polym Sci.10;132(2):41461.

[10] Torres A, López de Dicastillo C, Ríos M, Bastias I, Guarda A, Galotto MJ. 2014. Effect of Organoclay Incorporation on Thermal, Physical and Morphological Properties of LLDPE Nanocomposites for Active Food Packaging Applications. J Chil Chem Soc. 59(4):2681–2685.

[11] Bruna JE, Peñaloza A, Guarda A, Rodríguez F, Galotto MJ. 2012. Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Appl Clay Sci. 58:79–87.

[12] Lee SY, Lee SJ, Choi DS, Hur SJ. 2015. Current topics in active and intelligent food packaging for preservation of fresh foods. J Sci Food Agric. 95(14):2799–2810.

[13] Savas LA, Hancer M. 2015. Montmorillonite reinforced polymer nanocomposite antibacterial film. Appl Clay Sci. 108:40–44.

[14] Nasiri A, Peyron S, Gastaldi E, Gontard N. 2016. Effect of nanoclay on the transfer properties of immanent additives in food packages. J Mater Sci. 51(21):9732–9748.

[15] Azeredo HMC. 2009. Nanocomposites for food packaging applications. Food Res Int. 42(9):1240–1253.

[16] Yildirim S, Röcker B, Rüegg N, Lohwasser W. 2015. Development of Palladium-based Oxygen Scavenger: Optimization of Substrate and Palladium Layer Thickness. Packag Technol Sci. 28(8):710–718.

[17] Rodríguez FJ, Galotto MJ, Guarda A, Bruna JE. 2012. Modification of cellulose acetate films using nanofillers based on organoclays. J Food Eng. 110(2):262–268.

[18] Khalil RKS. 2013. Selective removal and inactivation of bacteria by nanoparticle composites prepared by surface modification of montmorillonite with quaternary ammonium compounds. World J Microbiol Biotechnol. 29(10):1839–1850.

[19] Khan MS, Sultana S. 2015. Synthesis and Properties of High Strength Thin Film Composites of Poly(ethylene Oxide) and PEO-PMMA Blend with Cetylpyridinium Chloride Modified Clay. Int J Polym Sci. 2015:1–10.

[20] Pavlidou S, Papaspyrides CD. 2008. A review on polymer–layered silicate nanocomposites. Prog Polym Sci. 33(12):1119–1198.

[21] Ke YL, Jiao LF, Song ZH, Xiao K, Lai TM, Lu JJ, et al. 2014. Effects of cetylpyridinium-montmorillonite, as alternative to antibiotic, on the growth performance, intestinal microflora and mucosal architecture of weaned pigs. Anim Feed Sci Technol. 198:257–262.

[22] Malachová K, Praus P, Pavlíčková Z, Turicová M. 2008. Activity of antibacterial compounds immobilised on montmorillonite. Appl Clay Sci. 43:364–368.

[23] Özdemir G, Yapar S, Limoncu H. 2013. Preparation of cetylpyridinium montmorillonite for antibacterial applications. Appl Clay Sci. 72:201–205.

[24] Muñoz-Shugulí C, Rodríguez FJ, Bruna JE, Galotto MJ, Sarantópoulos C, Favaro MA, et al. 2019. Cetylpyridinium bromide-modified montmorillonite as filler in low density polyethylene nanocomposite films. Appl Clay Sci.168:203–210.

[25] Malek NA, Ramli NI. 2015. Characterization and antibacterial activity of cetylpyridinium bromide (CPB) immobilized on kaolinite with different CPB loadings. Appl Clay Sci. 109–110:8–14.

[26] US FDA. 2007. Part 173. Secondary direct food additives permitted in food human consumption. Code of Feredal Regulations.

[27] Banik N, Jahan S, Mostofa S, Kabir H, Sharmin N, Rahman M, et al. 2015. Synthesis and characterization of organoclay modified with cetylpyridinium chloride. Bangladesh J Sci Ind Res. 50(1):65.

[28] Wang X, Du Y, Yang J, Wang X, Shi X, Hu Y. 2006. Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer (Guildf). 47(19):6738–6744.

[29] Wyrwa J, Barska A. 2017. Innovations in the food packaging market: active packaging. Eur Food Res Technol. 243(10):1681–1692.

[30] Youssef AM. 2013. Polymer Nanocomposites as a New Trend for Packaging Applications. Polym Plast Technol Eng. 52(7):635–660.

[31] Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. 2014. Evaluation and Simulation of Silver and Copper Nanoparticle Migration from Polyethylene Nanocomposites to Food and an Associated Exposure Assessment. J Agric Food Chem. 62(6):1403–1411.

[32] European-Commission. 2011. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union.

[33] European Commission. 1997. Commission Directive 97/48/EC of 29 July 1997 amending for the second time Council Directive 82/711/EEC laying down the basic rules necessary for testing migration of the constituents of plastic materials and articles intended to come into contact with foodstuffs. Off J Eur Communities.

[34] Nigmatullin R, Gao F, Konovalova V. 2008. Polymer-layered silicate nanocomposites in the design of antimicrobial materials. J Mater Sci. 43(17):5728–5733.