Cyclic Voltammometry of Binderless Activated Carbon Monoliths based supercapacitor from Mixtures of Pre-carbonized of Fibers of Empty Fruit Bunches and Green Petroleum Coke

Abstract

Binderless activated carbon monoliths (BACMs) prepared from mixtured of pre-carbonized of fibers of oil palm empty fruit bunches (EFB) and green petroleum coke were used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated by using two BACMs electrode prepared for each selected holding time of activation and various compression pressure. The electrochemical behavior of supercapacitor cells were measured at room temperature by using cyclic voltammetry (CV) technique. The maximum specific capacitance (Csp) of the cells values were 35.9 and 82.5 F/g for holding time of activation of 1.5 and 2 h, respectively, at the compression pressure of 7.5 metric tons. 

References
[1] C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, and F. Beguin, Electrochemical energy storage in ordered porous carbon materials, Carbon, 43, 1293–1302, (2005).


[2] D. Yang, Pulsed laser deposition of cobalt-doped manganese oxide thin films, J Power Sources, 198, 416–422, (2012).


[3] G. Nystrom, M. Stromme, M. Sjodin, and L. Nyholm, Rapid potential step charging of paper-based polypyrrole energy storage devices, Electrochim Acta, 70, 91–97, (2012).


[4] R. Farma, M. Deraman, A. Awitdrus, I. A. Talib, E. Taer, N. H. Basri, J. G. Manjunatha, M. M. Ishak, B. N. Dollah, and S. A. Hashmi, Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors, Bioresour Technol, 132, 254–261, (2013).


[5] A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J Power Sources, 157, 11–27, (2006).


[6] A. M. Deraman, I. A. Talib, R. Omar, M. H. Jumali, E. Taer, and M. H. Saman, Microcrystallite dimension and total active surface area of carbon electrode from mixtures of pre-carbonized oil palm empty fruit bunches and green petroleum cokes, Sains Malays, 39, 83–86, (2010).


[7] M. Deraman, I. A. Awitdrus, I. A. Talib, R. Omar, M. H. Jumali, M. M. Ishak, S. K. M. Saad, E. Taer, M. M. Saman, R. Farma, R. M. Yunus, , M. Abdullah, W. Srigutomo, and S. Viridi, Electrical conductivity of carbon pellets prepared from mixtures of pyropolymers from oil palm bunches and petroleum green coke, AIP Conf Proc, 1325,
50–54, (2010).


[8] M. Deraman, R. Omar, S. Zakaria, I. R. Mustapa, M. Talib, N. Alias, and R. Jaafar, Electrical and mechanical properties of carbon pellets from acid (HNO3) treated self-adhesives carbon grain from oil palm empty fruit bunch, J Mater Sci, 37, 3329– 3335, (2002).


[9] M. .. Awitdrus, (2015).


[10] C.-C. Hu, C.-C. Wang, F.-C. Wu, and R.-L. Tseng, Characterization of pistachio shellderived carbon activated by a combination of KOH and CO2 for electric double-layer capacitor, Electrochim Acta, 52, 2498–2505, (2007).


[11] H. Yu, J. Wu, L. Fan, Y. Lin, K. Xu, Z. Tang, C. Cheng, S. Tang, J. Lin, M. Huang, and Z. A. Lan, novel redox-mediated gel polymer electrolyte for high-performance superkapasitor, J Power Sources, 198, 402–407, (2012).


[12] J. J. Moore, J. H. Kang, and J. Z. Wen, Fabrication and characterization of single wallet nanotube supercapacitor electrodes with uniform pores using electrophoretic deposition, Mater Chem Phys, 134, 68–73, (2012).


[13] M. P. Bichat, E. Raymundo-Pinero, and F. Beguin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte, Carbon, 48, 4351–4361, (2011).


[14] H. Wang and L. Pilon, Physical interpretation of cyclic voltammetry for measuring electric double layer capacitans, Electrochim Acta, 64, 130–139, (2012).


[15] J. Xu, L. Gao, J. Y. Cao, W. C. Wang, and Z. D. Chen, Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material, Electrochim Acta, 56, 732–736, (2010).


[16] D. Liu, J. Shen, N. Liu, H. Yang, and A. Du, Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors, Electrochim Acta, 89, 571–576, (2013).


[17] W. G. Pell and B. E. Conway, Voltammetry at a de Levie brush electrode as a model for electrochemical superkapasitor behavior, J Electroanal Chem, 500, 121– 133, (2001).


[18] C. Ma, Y. Song, J. Shi, D. Zhang, X. Zhai, M. Zhong, Q. Guo, and L. Liu, Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes, Carbon, 51, 290–300, (2013).