Photocatalytic degradation of Direct Yellow-27 by photolysis with UV-light and solar irradiation Using N-doped TiO2

Abstract

Degradation of Direct Yellow-27 has been investigated using irradiation process of UV light and solar by adding of N-Doped TiO2 catalyst. The aims of this research were to explore the optimum condition of N-Doped TiO2 catalyst, and to test the best process of irradiation that used to degrade of Direct Yellow-27. The absorbances of sample were measured by using UV-Vis Spectrophotometer (λ=300-800 nm). The conditions of before and after degradation were quantified by using Ion Chromatography. Direct Yellow-27 was successful degradated using the irradiation procces of UV light (10 watt, λ=365 nm) and solar (28.000 lux) with and without using N-Doped TiO2 catalyst. The result of this study showed that solar irradiation was better than UV light in process of degradation. The degradation process of direct Yellow-27 was destitute N-Doped TiO2 catalyst 8,72 %, while by adding of N-Doped TiO2 catalyst 52,86%. The catalyst optimum mass in this study was 10 mg. The liquid Chromatography analysis represented the broadening of peak that notices Diret Yellow-27 was successful degradated.


 


Keywords: Direct Yellow-27, UV-light, Solar irradiation, N-Doped TiO2 , Photocatalyst, liquid Chromatographic.

References
[1] S. Yuhandri, Madenda, E.P. Wibowo, Int. J. Adv. Sci. Eng. Inf. Technol. 7 (2017) 235– 241.


[2] n. indictor and a. and j. summerfield d. montegut, Numerous, 27 (1996).


[3] S.N.R.I. Panagiotis G. Smirniotis, Thirupathi Boningari, Devaiah Damma, Catal. Commun. 113 (2018) 1–5.


[4] S. Safni, Deliza, D. Anggraini, R.S. Dewi, H. Ulia, D.V. Wellia, Der Pharma Chem. 8 (2016) 30–35.


[5] S. Safni, D. Vanda Weillia, P. Sri Komala, R. Audina Putri, Der Pharma Chem. 8 (2016) 642–646.


[6] Zaharia Carmen and Suteu Daniela, in:, D.T. Puzyn (Ed.), Text. Org. Dye. – Characteristics, Polluting Eff. Sep. Proced. from Ind. Effluents – A Crit. Overv., InTech, Romania, 2012, pp. 56–83.


[7] R.P.F. Melo, E.L.B. Neto, M.C.P.A. Moura, T.N.C. Dantas, A.A.D. Neto, H.N.M. Oliveira, J. Water Process Eng. 7 (2015) 196–202.


[8] S. Chakraborty, B. Basak, S. Dutta, B. Bhunia, A. Dey, Bioresour. Technol. 147 (2013) 662–666.


[9] S. Jain, R. V Jayaram, Desalination 250 (2010) 921–927.


[10] N. Jaafarzadeh, A. Takdastan, S. Jorfi, F. Ghanbari, M. Ahmadi, G. Barzegar, J. Mol. Liq. 256 (2018) 462–470.


[11] K. Safni, Deby Anggraini, Diana Vanda Wellia, J. Litbang Ind. 5 (2015) 123–130.


[12] M. Punzi, A. Anbalagan, R.A. Börner, M. Jonstrup, B. Mattiasson, Chem. Eng. J. 270 (2015) 290–299.


[13] F.R. Furlan, L. Graziela, D. Melo, A.F. Morgado, A. Augusto, U. De Souza, S. Maria, A. Guelli, U. De Souza, Resour. Conserv. Recycl. 54 (2010) 283–290.


[14] C. Belver, J. Bedia, A. Go, M. Pen, in:, Chem. Eng. Sect. Univ. Auton. Madrid, Madrid, Spain Photocatal., 2019, pp. 581–651.


[15] M. Konyar, T. Yildiz, M. Aksoy, H.C. Yatmaz, K. Öztürk, Chem. Eng. Commun. 204 (2017) 705–710.


[16] J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, J. Hazard. Mater. 168 (2009) 253–261.


[17] A. Lee, J.A. Libera, R.Z. Waldman, A. Ahmed, J.R. Avila, J.W. Elam, S.B. Darling, Adv. Sustain. Syst. 1 (2017) 1–6.


[18] T.P.Y. and J.C.S. Spencer P. Pitre, ChemComm (2017) 1–5.


[19] H.C. Lee, H.S. Park, S.K. Cho, K.M. Nam, J. Bard, J. Electroanal. Chem. 819 (2017) 38–45.


[20] V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Appl. Catal. B Environ. 170–171 (2015) 153–161.


[21] M.K. Giri, N. Jaggi, (2010).


[22] C. Material Safety Data Sheet Direct Direct Yellow-27Identification, in:, 1910, pp. 1–7.


[23] P. V. Kamat, Acc. Chem. Res. 50 (2017) 527–531.


[24] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69–96.


[25] J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, (2009) 12290–12297.


[26] J.T. Adeleke, T. Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe, A.B. Alabi, Appl. Surf. Sci. 455 (2018) 195–200.


[27] R.M.Cristie, in:, R.M.Cristie (Ed.), Woodheed Publ. Text., 2007, pp. 1–253.


[28] Z. He, Y. Xia, B. Tang, J. Su, Z. pHYS. cHEM (2018) 1–13.


[29] A. Chauhan, S. Thirumalai, R.V. Kumar, Mater. Today Commun. 17 (2018) 371–379.


[30] A. Mukimin, H. Vistanty, N. Zen, A. Purwanto, K.A. Wicaksono, J. Water Process Eng. 21 (2018) 77–83.


[31] G. Sanzone, M. Zimbone, G. Cacciato, F. Ru, R. Carles, V. Privitera, 123 (2018) 394– 402.


[32] H. Zhu, R. Jiang, Y. Fu, R. Li, J. Yao, Appl. Surf. Sci. 369 (2016) 1–10.


[33] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. A Chem. 1 (2000) 1–21.


[34] M. Nasirian, M. Mehrvar, J. Environ. Sci. 66 (2017) 81–93.


[35] d A.F.N. Andreia Morais, a Claudia Longo, a Joyce R. Araujo, b Monica Barroso, c James R. Durrant, R. Soc. Chem. 18 (2016) 2608–2616.


[36] N.E. Fahmi Arifan, FS Nugraheni, Hafiz Rama Devara, Earth Environ. Sci. 116 (2018).


[37] D. Kanakaraju, C.A. Motti, B.D. Glass, M. Oelgemöller, Chemosphere 139 (2015) 579– 588.


[38] C. Bradu, M. Magureanu, V.I. Parvulescu, J. Hazard. Mater. 336 (2017) 52–56.


[39] Arnold R.Lang, in:, 2009.


[40] P.J. Hauser, Textile Dyeing, CROATIA, 2011.


[41] E.T. Helmy1, Ahmed El Nemr1, * M.M., E. Arafa3, S. Eldafrawy, J. Water Env. Nanotechnol 3 (2018) 116–127.