Investigation of Solid Precipitate that Prevents Etching of Silicon in a Solution of Ethylenediamine and Pyrocatechol

Abstract

The article studies effect of solid precipitate building up that prevents etching of silicon in a solution of ethylenediamine and pyrocatechol. The article provides technology recommendations that allow avoiding the formation of the undesirable solid precipitate.

References
[1] Kumar, S. and Gerhardt, R. A. (2012). Role of geometric parameters in electrical measurements of insulating thin films deposited on a conductive substrate. Measurement Science and Technology, vol. 23, no. 3.


[2] Holwill, R. J. (1989). Materials Science and Engineering: A, vol. 116, pp. 143–145.


[3] Toyoda, S., Kiyota, T., Tamagawa, K., et al. Materials Science and Engineering: A, vol. 163, no. 2, pp. 167–170.


[4] Kawabata, K., Tanaka, T., and Kajioka, H. (1993). Materials Science and Engineering: A, vol. 163, no. 2, pp. 163–165.


[5] Fujimura, N., Nishida, N., Ito, T., et al. (1989). Materials Science and Engineering: A, vol. 108, pp. 153–157.


[6] Jeyachandran, Y. L., Karunagaran, B., Narayandass, Sa. K., et al. (2006). Materials Science and Engineering: A, vol. 431, nos. 1–2, pp. 277–284.


[7] Chopra, K. L. (1972). Electrical Phenomena in Thin Films, p. 435. Moscow: Russia.


[8] Xian-ping, Wu, Oing-hai, Wu, Ko Wen, H. (1985). Исследование процесса глубинного травления кремния в травителе ЭДА+ПК+H2O [Transducers-85. International Conference on Solid-State Sensors and Actuators]. Digest of Technical Papers pp. 291–294. New York, NY.


[9] Jolly, R. D. and Muller, R. S. (1980). Miniature cantilever beams fabricated by anisotropic etching of silicon. Journal of the Electrochemical Society, vol. 127, pp. 2750– 2754.


[10] Smith, R. L., Clock, В., De Rooij, N., et al. (1987). The potential dependence of silicon anisotropic etching in KOH at 60oC. Journal of Electroanalytical Chemistry, vol. 238, pp. 103–113.


[11] Schroder, H. and Obermeier, E. (2000). A new model for Si (100) convex corner undercutting in anisotropic KOH etching. Journal of Micromechanics and Microengineering, vol. 10, no. 2, pp. 163–170.


[12] Schroder, H., Obermeier, E., and Steckenborn, A. (2001). Micropyramidal hillocks on KOH etched (100) silicon surfaces: Formation, prevention and removal. Journal of Micromechanics and Microengineering, vol. 9, no. 2, pp. 139–145.


[13] Conway, E. M. and Cunnane, V. J. (2001). Effects of chemical pretreatments on the etching process of p(100) Si in tetra-methyl ammonium hydroxide. Journal of Micromechanics and Microengineering, vol. 11, no. 3, pp. 245–256.


[14] Powell, O. and Harrison, H. B. (2002). Anisotropic etching of (100) and (110) planes in (100) silicon. Journal of Micromechanics and Microengineering, vol. 11, no. 3, pp. 217–220.


[15] Thong, J. T., Luo, P., and Tan, S. C. (2001). Evolution of hillocks during etching in TMAN. Journal of Micromechanics and Microengineering, vol. 11, no. 1, pp. 61–69.


[16] Abu-Zeid, M. M. (1984). Corner undercutting in anisotropically etched isolation contours. Journal of the Electrochemical Society, vol. 131, no. 9, pp. 2138–2142.


[17] Veselov, D. S. and Voronov, Yu. A. (2016). Formation of dielectric silicon compounds by reactive magnetron sputtering. Journal of Physics: Conference Series, p. 747, 012022.


[18] Veselov, D. S., Bakun, A. D., and Voronov, Yu. A. (2016). Analytical model of plasmachemical etching in planar reactor. Journal of Physics: Conference Series, p. 748, 012017.