Application of Hexagonal Conceptual Model for Solving Problem of Synchronization By Visual Designing of Complex Systems

Abstract

In this article, solutions in the field of synchronous technology of the computer-aided design of complex systems on the example of the integral structure are discussed. The main attention is paid to the methods of conceptual and functional and logical design using the tools of visual presentation. The data transfer problem between the levels of design models have been analyzed. To synchronize design models at the system level, a hexagonal conceptual model is proposed for the visual presentation of information about the integrated structures and the VI-XML language – for the implementation of the synchronous modeling environment.

References
[1] Vlasov, A. I. (2013). Spatial model assessment of evolution methods of visual design of complex systems. Sensors and Systems, vol. 9, pp. 10–28.


[2] Nazarov, A. V. and Vlasov, A. I. (2011). Osnovy modelirovaniya mikro- i nanosistem: Uchebnoe posobie, p. 142. Moscow: MGTU im.N.E.Baumana (in Russian).


[3] Lohov, A. and Rabovolyuk, A. (2007). Elektronika: Nauka, Tekhnologiya, Biznes, vol. 3, pp. 102–109.


[4] Koznov, D. V. (2004). Visual modeling languages: design and visualization software. Uchebnoe posobie (SPb: Izd-vo SPbGU), p. 143 (in Russian).


[5] Shakhnov, V., Vlasov, A., Rezchikova, E. et al. (2013). Proceedings of International Conference on Interactive Collaborative Learning (Kazan) (IEEE) pp. 389–398.


[6] Rabovolyuk, A. (2005). Komponenty i tekhnologii, vol. 7 (in Russian).


[7] Kotel’nickij, A. V. and Vlasov, A. I. (2012). Inzhenernyj vestnik, vol. 9, p. 10 (in Russian).


[8] Ivanov, A. M. and Vlasov, A. I. (2012). Verification of software models of communication networks, Science and Education of the Bauman, vol. 10, p. 24.


[9] Vlasov, A. I. and Zhuravleva, L. V. (2013). Visualization of Creative Strategies: Application of Mental Maps. Caspian Journal: Management and High Technologies, vol. 1, pp. 133–140.


[10] Vlasov, A. I., Zhuravleva, L. V., and Timofeev, G. G. (2013). Nauchnoe obozrenie, vol. 1, pp. 107–111 (in Russian).


[11] Vlasov, A. I. (2013). System Analysis of Production Processes in Complicated Engineering Systems Using Visual Models. International Research Journal, vol. 10– 12, no. 17, pp. 17–26.


[12] Vyhovanec, V. S. (2009). Proc. Mezhdunarodnoj nauchno-prakticheskaya mul’tikonferenciya Upravlenie bol’shimi sistemami (Moscow)(IPU RAN) pp. 62–65 (in Russian).


[13] Vyhovanec, V. S. (2009). Proc. Mezhdunarodnoj konferencii. Upravlenie razvitiem krupnomasshtabnyh sistem (Moscow) (IPU RAN) pp. 308–317 (in Russian).


[14] Lomako, E. I. (2008). System Encyclopedia (in Russian). Moscow.


[15] Peregudov, F. I. and Tarasenko, F. L. (1989). Introduction to System Analysis. Moscow: VSH.


[16] Pershenkov, V. S., Podlepeckij, B. I., Bocharov, Yu. I. et al. (2015). Sensors and systems, vol. 1, pp. 3–22.


[17] Amirhanov, A. V., Gladkih, A. A., Glushko, A. A., et al. (2013). Sensors and Systems, vol. 9, pp. 38–51.


[18] Amirhanov, A. V., Gladkih, A. A., Glushko, A. A., et al. (2016). Information Technologies, vol. 22, no. 2, pp. 127–133.


[19] Amirhanov, A. V., Gladkih, A. A., Glushko, A. A., et al. (2013). Proc. NIISI RAN, vol. 3, no. 1, pp. 10–19.