Análisis y Estimación de Precipitación para Modelado de Caudal del Río Juan Díaz en el Distrito de Panamá Utilizando Redes Neuronales


When high levels of urban development, and erratic patterns of high precipitation combine in a small geographical area, there is a significant increase in the risk of human and/or material losses due to flooding and related incidents. With the objective of providing a method for the estimation of precipitation patterns in an area with a high risk of flooding, the current document describes the design and implementation of a neural-network-based system as a potential solution. With the use of TRMM satellite data, and ground station flow measurements in the Juan Díaz river, two models are developed for the estimation of the behavior of these magnitudes: one for estimating precipitation levels based on time, and one that estimates the flow of the river as a function of precipitation.

Keywords: modeling, estimation, precipitation, flow, river.

[1] Bustami, R., Bessaih, N., Bong, C., & Suhaili, S. (2007). Artificial Neural Network for Precipitation and Water Level Predictions of Bedup River. IAENG International Journal of computer science, 34(2).

[2] Chen, S. Duan, T. Cai, and B. Liu, (2011) “Online 24-h solar power forecasting based on weather type classification using artificial neural network,” Solar Energy, vol. 85, no. 11, pp. 2856–2870, vol. 1, no. 3

[3] Gordon (2016), “Cuenca del río Juan Díaz: dinámicas demográficas y urbanas en la configuracion de la vulnerabilidad ante desastres relacionados a amenazas naturales,” desastresrelacionados-a-amenazas-naturales/, 04/14/17.

[4] Kummerow, W. Barnes, T. Kozu, J. Shiue, and J. Simpson, (1998) “The tropical rainfall measuring mission (trmm) sensor package,” Journal of atmospheric and oceanic technology, vol. 15, no. 3, pp. 809–817.

[5] Contraloría General de la Republica de Panamá (2010), “Censo 2010”.

[6] Li, S. Guo, C.-J. Li, and J.-Q. Sun, (2013) “A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm,” Knowledge-Based Systems, vol. 37, pp. 378–387.

[7] Gonzalez Pinilla (2016), “Cuatro muertos y cinco desaparecidos tras las intensas lluvias en Panamá”, 04/14/17.

[8] Abhishek, M. Singh, S. Ghosh, and A. Anand, (2012) “Weather forecasting model using artificial neural network,” Procedia Technology, vol. 4, pp. 311–318.

[9] Ramirez, H. F. de Campos Velho, and N. J. Ferreira, (2005) “Artificial neural network technique for rainfall forecasting applied to the sao Paulo region,” Journal of hydrology, vol. 301, no. 1, pp. 146–162.

[10] Ministerio de Vivienda de la República de Panamá (1997), “Plan de desarrollo urbano de las Areas metropolitanas del pacífico y del atlántico”.

[11] Baldi and A. F. Atiya, (1994) “How delays affect neural dynamics and learning,” IEEE Transactions on Neural Networks, vol. 5, no. 4, pp. 612–621.

[12] Mathur, A. Kumar, and M. Ch, (2007) “A feature based neural network model for weather forecasting,”.

[13] Baboo and I. K. Shereef, (2010) “An efficient weather forecasting system using artificial neural network,” International journal of environmental science and development, vol. 1, no. 4, p. 321.

[14] Kumar, M. Dewal, and R. Anand, (2014) “Epileptic seizures detection in eeg using dwt-based apen and artificial neural network,” Signal, Image and Video Processing, vol. 8, no. 7, pp. 1323–1334.

[15] Khalifehloo, M. H., Mohammad, M., & Heydari, M. (2017). Application of artificial neural network and regression analysis to recovery of missing hydrological data in Klang River Basin. Environmental Conservation, Clean Water, Air & Soil (CleanWAS), 67