Diseño e Implementacion de un Modulo de Gestion de Energia para un Pico-Satelite Tipo Cubesat


This article briefly describes the development of Power Module for Experimental picosatellite CubeSat UD Colombia 1 following CubeSat standard requirements. Whether the Power Module project consists of four stages of development: study, design, implementation and testing. In the study phase to review the theoretical framework and preliminary designs made in the Universidad Distrital and other CubeSat  developed in the world, also investigates existing components and technologies in the market. The design phase involves analysis of the system and using a computer program designed to generate the necessary hardware. The implementation consists in making the printed circuit board and the component assembly. And electrical type tests to certify the proper operation of the module. The development of the power module of the CubeSat standard requirements and mission picosatellite, and depends on the state and information available from other modules picosatellite. The ultimate goal is to obtain a power module that is functional and working conditions of the space environment in which the picosatellite fulfill its focused on telemedicine, with a payload that would become the telecommunications system mission.


Keywords: Power Module, CubeSat UD Colombia 1, Standard CubeSat, DC-DC converters, Solar Panels, Batteries, Power Management.

[1] Duan, L., Loh, J.T., and Chen, W.F. (1990). “M-P-F based analysis of dented tubular members”. Journal of Structural Engineering, Vol. 21, No. 8, pp 34-44.

[2] CHAVES GARCIA, Augusto E. Sistema de Potencia Fotovoltaica para Equipos Remotos: Diseño del Módulo de Potencia Picosatélite Experimental CubeSAT UD. Bogotá, 2008, 137 h. Trabajo de grado (Ingeniero Electrónico). Universidad Distrital Francisco José de Caldas. Facultad de Ingeniería. Proyecto Curricular de Ingeniería Electrónica.

[3] DAY, Christopher Alan. The Design of an Efficient, Elegant, and Cubic Pico-Satellite Electronics System. San Luis Obispo, 2004, 108 h. Thesis (Master of Science in Electrical Engineering). California Polytechnic State University.

[4] LARSON, Wiley J.; WERTZ James R. Space Mission Analysis and Design. El Segundo CA: Microcosm Press and Kluwer Academic Publishers, 1999, 987 p. ISBN 1-881883- 10-8.

[5] ALMINDE, Lars; BISGAARD, Morten. Design of Hardware and Software for the Powersupply for AAU Cubesat. Aalburg, 2002, 39 h. Reporte Group 02gr733. Institute of Electronic Systems. University of Aalborg. Disponible en:

[6] ALMINDE, Lars; BISGAARD, Morten. Power Supply for the AAU Cubesat. Aalburg, 2001, 239 h. Reporte Group 01gr509. Institute of Electronic Systems. University of Aalborg. Disponible en: http://www.cubesat.auc.dk/dokumenter/psu.pdf

[7] DAN LAZAR, Radu; BUCELEA, Vasile. Optimized Design of Power Supply for CubeSat at Aalborg University. Aalburg, 2001, 163 h. Reporte GROUP PED9-17C. Institute of Energy Technology. Aalborg University. Disponible en: http://www.cubesat.auc.dk/psu.html

[8] DORN, Lawrence Tyrone Jr. Nps-Scat; Electrical Power System. Monterrey CA. 2009, 103 h. Master’s Thesis. Naval Postgraduate School. Disponible en: http://www.dtic.mil/cgibin/GetTRDoc Location=U2&doc=GetTRDoc.pdf&AD=ADA508860

[9] KRISHNAMURTHY, Narayanan. Dynamic Modelling of CubeSat Project MOVE. Luleå, Sweden, 2008, 129 h. Master Thesis, Continuation Courses Space Science and Technology. Department of Space Science, Kiruna. Luleå University of Technology. Disponible en: http://epubl.ltu.se/1653-0187/2008/080/LTU-PB-EX-08080-SE.pdf

[10] CHAN, Roger; BENERJEE, Rajib; JANI, Anang. Win-Cube Project: Electrical Power System Phase Two Critical Design Review. Winnipeg, Canada, 2008, 152 h. Final Report (Bachelor of Science in Electrical Engineering).
Faculty of Engineering. University of Manitoba. Disponible en: http://ltc.umanitoba.ca/wincube/images/a/ab/Final_Report_1.pdf