Embedded System Generating Trajectories of a Robot Manipulator of Five Degrees of Freedom (D.O.F)

Abstract

system of the final effector in a desired orientation and position. To do this, algorithms must be used to generate and control the coordinated movements of the robot joints. This article will deal with three movements (MOVEJ, MOVES and MOVEC) implemented in the industrial controller CompactRIO, which can be combined so that the robot can develop any task that is scheduled.

Keywords: MCD, MCI, CompactRIO, Slerp.

References
[1] Alcaraz Salvago, A. (2012). “Desarrollo de algoritmos de control y movimiento de robots”, mediante LabVIEW Robotics.


[2] Barrera, T., Hast, A., & Bengtsson, E. (2004, November). “Incremental spherical linear interpolation”. In The Annual SIGRAD Conference. Special Theme-Environmental Visualization. (No. 013, pp. 7-10). Linköping University Electronic Press.


[3] Barrientos, A., Peñín, L. F., Balaguer, C., & Aracil, R. (1997). “Fundamentos de robótica” (Vol. 256). McGraw-Hill. Págs. 12, 17.


[4] Castillo, S. A., & Caberta, R. Ñ. (2003). “Caracterización de un robot manipulador articulado”. Coordinación de Mecatrónica, Tesis de Maestría, CENIDET, México, Junio del.


[5] Constaín, A., Torres, K., Arango, J., & Vivas, A. (2009). “Modelado, Identificación Paramétrica y Control del Robot SCORBOT-ER 5 PLUS”. In Presentado en el VIII Congreso de la Asociación Colombiana de Automática, Cartagena, Colombia.


[6] Chaudhary, H., & Prasad, R. (2011). “Intelligent inverse kinematic control of scorboter v plus robot manipulator”.


[7] Deshpande, V. A., & George, P. M. (2012). “Analytical Solution for Inverse Kinematics of SCORBOT-ER-Vplus Robot”. International Journal of Emerging Technology and Advanced Engineering.


[8] Eberly, D. (2002). “Quaternion algebra and calculus”. Magic Software Inc.


[9] Kazemi, M. S., & Dominguez, M. J. (2016, October). “Simulation and evaluation of neuro-controllers applied in a SCORBOT. In Automatica (ICA-ACCA)”, IEEE International Conference on (pp. 1-9). IEEE.


[10] Kumar, R. R., & Chand, P. (2015, February). “Inverse kinematics solution for trajectory tracking using artificial neural networks for SCORBOT ER-4u. In Automation, Robotics and Applications (ICARA)”. 6th International Conference on (pp. 364-369). IEEE.


[11] Parra Andrade, G. E. (2015). “Control del robot Pionner 3D utilizando una FPGA Rio (Doctoral dissertation, Universidad de las Fuerzas Armadas ESPE”. Carrera de Ingeniería en Electrónica, Automatización y Control.).


[12] Rojas, J. H. C., Serrezuela, R. R., López, J. A. Q., Perdomo, K. L. R. (2016). LQR hybrid approach control of a robotic arm two degrees of freedom. International Journal of Applied Engineering Research. 11(17), pp. 9221-9228


[13] Serrezuela, R. R., Villar, O. F., Zarta, J. R., & Cuenca, Y. H. (2016). The K-Exponential Matrix to solve systems of differential equations deformed. Global Journal of Pure and Applied Mathematics, 12(3), 1921-1945.


[14] Serrezuela, R. R., Chavarro, A. F. C., Cardoso, M. Á. T., Toquica, A. L., & Martinez, L. F. O. (2017). Kinematic Modelling of a robotic arm manipulator using MatLab. ARPN Journal of Engineering and Applied Sciences. 12(7), pp. 2037-2045


[15] Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). “Robotics: modelling, planning and control”. Springer Science & Business Media.


[16] Zarta, J. R. & Serrezuela, R. R. (2017). Solution of systems of differential equation deformed with K-Exponential Matrix, In Taekyun Kim, Advanced Mathematics: Theory and applications (p.p. 189-204), India, Delhi.