Ontología y Procesamiento de Lenguaje Natural


At present, the convergence of several areas of knowledge has led to the design and implementation of ICT systems that support the integration of heterogeneous tools, such as artificial intelligence (AI), statistics and databases (BD), among others. Ontologies in computing are included in the world of AI and refer to formal representations of an area of knowledge or domain. The discipline that is in charge of the study and construction of tools to accelerate the process of creation of ontologies from the natural language is the ontological engineering. In this paper, we propose a knowledge management model based on the clinical histories of patients (HC) in Panama, based on information extraction (EI), natural language processing (PLN) and the development of a domain ontology.

Keywords: Knowledge, information extraction, ontology, automatic population of ontologies, natural language processing.

[1] Bilgin, G., Dikmen, I. & Birgonul, M.T., (2014). Ontology Evaluation: An Example of Delay Analysis. Procedia Engineering, 85, pp.61–68.

[2] Cedeño, D. & Vargas-lombardo, M., (2015). Framework Based on Ontologies for Palliative Care of Patients with Breast Cancer., 37(3), pp.49–57.

[3] Chang-Su Kim, Sung-Han Kim, H.-K.J., (2015). A study on web standard-based RDF converter by applying linked data and using RDF/XML standard format for data. International Journal of Software Engineering and its Applications, 9(1), pp.1–12.

[4] Choukri, D., (2014). A New Distributed Expert System to Ontology Evaluation. Procedia Computer Science, 37, pp.48–55.

[5] Corcho, O. et al., (2005). Building legal ontologies with METHONTOLOGY and WebODE. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3369 LNAI, pp.142–157.

[6] Gruber, T.R., (1993). A translation approach to portable ontology specifications. Knowledge acquisition, 5(2), pp.199–220.

[7] Gruber, T.R., (1995). Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies, 43(5–6), pp.907–928. Available at: http://www.sciencedirect.com/science/article/pii/S1071581985710816.

[8] He, J. & Hendler, J., (2000). SHOE?: A Prototype Language for the Semantic Web 1 Introduction. World Wide Web Internet And Web Information Systems, pp.1–34.

[9] Hernández, A., (2009). Las ontologías: Nuevos retos. …Perspectivas Para La …, pp.355–379. Available at: http://dialnet.unirioja.es/descarga/articulo/2924584.pdf.

[10] Martínez-Costa, C. et al., (2009). A model-driven approach for representing clinical archetypes for Semantic Web environments. Journal of biomedical informatics, 42(1), pp.150–164. Available at: http://dx.doi.org/10.1016/j.jbi.2008.05.005.

[11] McGuinness, D.L. et al., (2000). An Environment for Merging and Testing Large Ontologies. Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning KR2000, pp.483– 493. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1. 1.109.1812&rep=rep1&type=pdf.

[12] Rui, L. & Maode, D., (2012). A Research on E - learning Resources Construction Based on Semantic Web. Physics Procedia, 25, pp.1715–1719. Available at: http://dx.doi.org/10.1016/j.phpro.2012.03.300.

[13] Ruiz-Martínez, J.M. et al., (2011). Ontology learning from biomedical natural language documents using UMLS. Expert Systems with Applications, 38(10), pp.12365– 12378.

[14] Studer, R., Benjamins, R. & Fensel, D., (1998). Knowledge Engineering: Principles and Methods. Data and Knowledge Engineering, 25(1–2), pp.161–197.

[15] Vilches-Blázquez, B., (2009). Construcción de ontologías a partir de tesauros. semántica Espacial y descubrimiento de conocimientos para desarrollo sostenible, pp.59–78. Available at: http://oa.upm.es/5129/%5Cnhttp://oa.upm.es/5129/2/ Construccion_de_ontologias_a_partir_de_tesauros_LMVilchesBlazquez.pdf.

[16] Villena-Román, J. et al., (2011). Método híbrido para categorización de texto basado en aprendizaje y reglas. Procesamiento de Lenguaje Natural, 46, pp.35–42.