Analysis Of Doppler Reactivity Coefficient On The Typical Pwr-1000 Reactor With Mox Fuel

Abstract

Doppler coefficient is defined as a relation between fuel temperature changes and reactivity changes in the nuclear reactor core. Doppler reactivity coefficient needs to be known because of its relation to the safety of reactor operation. This study is intended to determine the safety level of the  typical PWR-1000 core by calculating the Doppler reactivity coefficient in the core with UO2 and MOX fuels. The  typical PWR-1000 core  is similar to the PWR AP1000 core designed by Westinghouse but without Integrated Fuel Burnable Absorber (IFBA) and Pyrex. Inside the core, there are  UO2 fuel elements with 3.40 % and 4.45 % enrichment, and MOX fuel elements with 0.2 % enrichment. By its own way, the presence of Plutonium in the MOX fuel will contribute to the change in core reactivity. The calculation was conducted using MCNPX code with the ENDF/B- VII nuclear data. The reactivity change was investigated at various temperatures. The calculation results show that the core reactivity coefficient of both UO2 and MOX fuel are negative, so that the reactor is operated safely.

References
[ 1 ] SEMBIRING, TM, Analisis Pengaruh Bahan Bakar MOX Terhadap Parameter Teras Reaktor Benchmark. , J. Teknologi Reaktor Nuklir, Vol 9 No.1, Februari 2007.


[ 2 ] MASSIH, Ali R, Model for MOX Fuel Behaviour, SKI repot 2006:10, January 2006.


[3] STAICU, D and BARKER, M, Thermal Conductivity of Heterogeneous LWR MOX Fuels”, Journal of Nuclear Materials 442 (2013) 46–52


[4] STAICU, D, Thermal Conductivity of Homogeneous and Heterogeneous MOX Fuel with up to 44 MWd/kgHM Burn-up, Journal of Nuclear Materials 412 (2011) 129–137


[5] AMAYA Masaki, NAKAMURA Jinichi, NAGASE Fumihisa, FUKETA Toyoshi, Thermal Conductivity Evaluation of High Burnup Mixed-Oxide (MOX) Fuel Pellet, Journal of Nuclear Materials 414 (2011) 303–308


[6] TATSUMI, M, Analysis of High Moderator PWR MOX Core MISTRAL-4 with SRAC and MVP, Jurnal of Nuclear Science and Technology, Supplement 2, p 864-867, August 2002.


[7] SEUBERT, A, et al, Solution of the Stationary State of the PWR MOX/UO2 Core Transient Benchmark, PHISOR 2006, ANS Topical Meeting on Reactor Physics, Canadian Nuclear Society, Vencouver, September 10-14, 2006.


[8] RIVEROLA, J, RIA Analysis for PWR at both HZP and HFP Operation and all Cycle Fuel Exposure with 3D Techniques”, Proceeding of the 2004 International meeting on LWR Fuel Performance , Oriando, Florida, September 19-22, 2004


[9] HENDRICKS, J. S., MCKINNEY, G. W., et al., MCNPX 2.6.0 Extensions, LA-UR-08-2216”, Los Alamos National Laboratory, 11 April 2008


[ 10 ] CHADWICK, M. B., OBLOZINSKY, P., HERMAN, M., et al., ENDF/B-VII: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, Nuclear Data Sheets, Vol. 107, pp. 2931-3060, 2006


[11] ROKHMADI dan SEMBIRING, TM, Verifikasi Perhitungan Reaktivitas Batang Kendali Teras Reaktor PWR AP1000, Prosiding Seminar Nasional Pengembangan Energi Nuklir VI, Jakarta, 11 Juni 2013.


[12] Westinghouse AP1000 Control Document Rev.16 [internet]. US: Westinghouse;2007. Tier 2 Chapter 4 Reactor, [cited 2010 August 3]. Available from: http://adamswebsearch2.nrc. gov/idmws/ViewDocByAccession.asp?AccessionNumber=ML071580939


[13] YAMAMOTO, A, et al, Benchmark Problem Suite for Reactor Physics Study of LWR Next Generation Fuels, Journal of Nuclear Science and Technology Vol 39 No.8 p.900-912 (August 2002).

[14] MOUSTAFA Aziz and MASSOUD Eman, Burn-up Analysis for a PWR Fuel Pin of the Next Generation, Arab Journal of Nuclear Science and Applications, 47(3), (93-103) 2014


[15] KLOOSTERMAN, Program MOX A Tool for the Calculation of Nuclide Densities in MOX Fuels, NFA-ACT-95-09, December 1995


[16] ROKHMADI, Analisis Faktor Multiplikasi Tak Hingga Bahan Bakar PWR Akibat Perubahan, Temperatur dan Data Nuklir, Prosiding Seminar Nasional Teknologi dan Keselamatan PLTN serta Fasilitas Nuklir ke13, UIN-BATAN, Jakarta 6 Nopember 2007


[17] ROKHMADI, Analisis Reaktivitas Batang Kendali pada Desain Teras MOX PWR AP1000, Prosiding Seminar Nasional Teknologi dan Keselamatan PLTN serta Fasilitas Nuklir ke 19, Yogyakarta, 24-25 September 2013.


[18] TUKIRAN, Menentukan Parameter Kinetik Reaktor PWR AP 600, Prosiding Laporan Tahunan P2TRR Tahun 2004.


[19] TUKIRAN, Evaluasi Parameter Kinetik Terhadap Keselamatan Teras AP1000 Berbahan Bakar MOX, Prosiding Seminar Nasional Teknologi dan Keselamatan PLTN serta Fasilitas Nuklir ke 19, Yogyakarta, 24-25 September 2013.