Objects Reconstruction By Compressive Sensing from Single-pixel Registrations Using DMD


Compressive sensing allows to reconstruct information from a number of sparse signals. Use of digital micromirror device (DMD) between object and single-pixel detector planes is example of sparse signals registration technique. Detection of illumination from the objects by a single-pixel detector using a DMD was modeled. Grayscale, binary and color object images were used as objects. By compressed sensing images obtained under various recording conditions were reconstructed. Obtained results were analyzed. Reconstruction quality estimations and processing times are given.

Keywords: compressed sensing, single-pixel imaging, digital micromirror device, image quality.

[1] Raskar R., Tumblin J. Computational Photography: Mastering New Techniques for Lenses, Lighting, and Sensors, A K Peters/CRC Press, 350 p. (2009).

[2] Lukac R. Computational Photography: Methods and Applications, CRC Press, 564 p. (2016).

[3] Donoho D.L. Compressed sensing // IEEE Transactions Information Theory, Vol. 52, Pp. 1289-1306 (2006).

[4] Candes E.J. Compressed sampling // International Congress of Mathematicians, Vol. 3, Pp. 1433-1452 (2006).

[5] Eldar Y.C., Kutyniok G. Compressed Sensing: Theory and Applications, Cambridge University Press, 558 p. (2012).

[6] Foucart S., Rauhut H. A Mathematical Introduction to Compressive Sensing, Birkhäuser Basel, 625 p. (2013).

[7] Hahn J., Lim S., Choi K., Horisaki R., Brady D. Video-rate compressed holographic microscopic tomography // Optics Express, Vol. 19 (8), Pp. 7289-7298 (2011).

[8] Lustig, M., Donoho, D., Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging // Magnetic Resonance in Medicine, Vol. 58 (6), Pp. 1182-1195 (2007).

[9] Graff, C.G., Sidky, E.Y. Compressive sensing in medical imaging // Applied Optics, Vol. 54 (8), Pp. c23-c44 (2015).

[10] Rawat, N., Hwang, I.-C., Shi, Y., Lee, B.-G. Optical image encryption via photoncounting imaging and compressive sensing based ptychography // Journal of Optics, Vol. 17 (6), Pp. 065704 (2015).

[11] Zhou, N., Li, H., Wang, D., Pan, S., Zhou, Z. Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform // Optics Communications, Vol. 343, Pp. 10-21 (2015).

[12] Zhou, N., Zhang, A., Zheng, F., Gong, L. Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing // Optics and Laser Technology, Vol. 62, Pp. 152-160 (2014).

[13] Geoffrey F Edelmann, Charles F Gaumond. Beamforming using compressed sensing // JASA Express Letters, Vol. 130(4), Pp. EL232-EL237 (2011).

[14] Kuang chih Lee, Jeffrey Ho, David Kriegman. Acquiring linear subspaces for face recognition under variable lighting // IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, Pp. 684-698 (2005).

[15] Takhar, D., Laska, J.N., Wakin, M.B., Duarte, M.F., Baron, D., Sarvotham, S., Kelly, K.F., Baraniuk, R.G. A new compressive imaging camera architecture using opticaldomain compression // Proceedings of SPIE, Vol. 6065, Pp. 606509 (2006).

[16] Duarte M.F., Davenport M.A., Takhar D., Laska J.N., Sun T., Kelly K.F., Baraniuk R.G. Single-pixel imaging via compressed sampling: Building simpler, smaller, and lessexpensive digital cameras // IEEE Signal Processing Magazine, Vol. 25, Pp. 83-91 (2008).

[17] Sun, B., Edgar, M.P., Bowman, R., Vittert, L.E., Welsh, S., Bowman, A., Padgett, M.J. 3D computational imaging with single-pixel detectors // Science, Vol. 340, Issue 6134, Pp. 844-847 (2013).

[18] Watts, C.M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D.R., Padilla, W.J. Terahertz compressive imaging with metamaterial spatial light modulators // Nature Photonics, Vol. 8 (8), Pp. 605-609 (2014).

[19] Edgar, M.P., Gibson, G.M., Bowman, R.W., Sun, B., Radwell, N., Mitchell, K.J., Welsh, S.S., Padgett, M.J. Simultaneous real-time visible and infrared video with singlepixel detectors // Scientific Reports, Vol. 5, Pp. 10669 (2015).

[20] Sun, M.-J., Edgar, M.P., Gibson, G.M., Sun, B., Radwell, N., Lamb, R., Padgett, M.J. Single-pixel three-dimensional imaging with time-based depth resolution // Nature Communications, Vol. 7, Pp. 12010 (2016).

[21] Brady D.J., Choi K., Marks D.L., Horisaki R., Lim S. Compressed holography // Optics Express, Vol. 17, Pp. 13040-13049 (2009).

[22] Rivenson Y., Stern A., Javidi B. Compressed Fresnel holography // Journal of Display Technology, Vol. 6 (10), Pp. 506-509 (2010).

[23] Cull C.F., Wikner, D.A., Mait, J.N., Mattheiss, M., Brady, D.J. Millimeter-wave compressed holography // Applied Optics, Vol. 49 (19), Pp. E67-E82 (2010).

[24] Qiao, L., Wang Y., Shen Z., Zhao Z., Chen Z. Compressed sensing for direct millimeterwave holographic imaging // Applied Optics, Vol. 54 (11), Pp. 3280-3289 (2015).

[25] Rivenson Y., Stern A., Javidi B. Improved depth resolution by single-exposure in-line compressed holography // Applied Optics. Vol. 52 (1), Pp. A223-A231 (2013).

[26] Endo Y., Shimobaba T., Kakue T., Ito T. GPU-accelerated compressed holography // Optics Express, Vol. 24 (8), Pp. 8437-8445 (2016).

[27] Clemente P., Durán V., Tajahuerce E., Torres-Company V., Lancis J. Single-pixel digital ghost holography // Physical Review A - Atomic, Molecular, and Optical Physics, Vol. 86 (4), Pp. 041803 (2012).

[28] Clemente P., Durán V., Tajahuerce E., Andrés P., Climent V., Lancis J. Compressed holography with a single-pixel detector // Optics Letters, Vol. 38 (14), Pp. 2524-2527 (2013).

[29] Li, J., Li, Y., Wang, Y., Li, K., Li, R., Li, J., Pan, Y. Two-step holographic imaging method based on single-pixel compressed imaging // Journal of the Optical Society of Korea, Vol. 18 (2), Pp. 146-150 (2014).

[30] A-qian S., Ding-fu Z., Sheng Y., You-jun H., Peng Z., Jian-ming Y., Xin Z. Optical scanning holography based on compressed sensing using a digital micro-mirror device // Optics Communications, Vol. 385, Pp. 19-24 (2017).

[31] Schnars U., Jueptner W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Berlin-Heidelberg: Springer-Verlag, 164 p. (2005).

[32] Wallace, G.K. The JPEG still picture compression standard // IEEE Transactions on Consumer Electronics, Vol. 38 (1), Pp. xviii-xxxiv (1992).

[33] Fienup J.R. Invariant error metrics for image reconstruction // Applied Optics, Vol. 36, Issue 32, Pp. 8352–8357 (1997).