Vortex Interferometric Microscopy with Laguerre-Gaussian Beams

Abstract

In the present research, we discuss the results of analysis of coherent light beams carrying an optical vortex and propagating through the isotropic medium with a complex surface microrelief and its application to super resolution microscopy. It was shown, that phase analysis of singular beam with single charged centered optical vortex allow to retrieve information about sample surface relief. High spatial resolution caused by vortex helical phase sensitivity to disturbances in wave front after reflection or spreading through studying sample, which can be optically transparent or have a reflecting surface. This method applicable for non-destructive testing of live cells and biological tissues in real-time regime with exceeding optical diffraction limit. Vertical resolution of a microscope based on the phase singularity of Laguerre-Gaussian beams of low order can be achieved down to 5,27 nm for helium-neon laser source for optically transparent and reflecting surfaces.


Keywords: optical vortex, phase, microscopy, singularity

References
[1] M. S. Soskin and M. V. Vasnetsov, “Singular Optics,” Progress in Optics, vol. 42, pp. 219–276, 2001.


[2] J. E.Molloy, K. Dholakia and M. J.Padgett, “Optical tweezers in a new light,” J. Mod. Opt., vol. 50, pp. 1501–1507, 2003.


[3] L. C. Feldman, J. W. Mayer, [Fundamentals of Surface and Thin Film Analysis], New York: North-Holland, pp.120–252, 1986.


[4] L. W. Shivea, B. L. Gilmore, “Impact of Thermal Processing on Silicon Wafer Surface Roughness,” Semiconductor Wafer Bonding 10: Science, Technology, and Applications, vol. 16, no. 8, pp. 401–405, 2008.


[5] C. Kranz, S. Wyczanowski, S. Dorn, K. Weise, C. Klein, K. Bothe, T. Dullweber, R. Brendel, “Impact of The Rear Surface Roughness on Industrial-Type Perc Solar Cell,” 27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, pp. 557–560, 2012.


[6] R. Sprague, “Surface Roughness Measurement Using White Light Speckle,” Applied Optics, vol. 11, no.12, pp. 2811–2816, 1972.


[7] Z. Zhenrong, Z. Jing, G. Peifu, “Roughness Characterization of Well-polished Surfaces by Measurements of Lightscattering Distribution,” Optica App., vol. 40 no. 4, pp. 811–818, 2010.


[8] I. Sh. Nevliudov, E. P. Vtorov, V. V. Tokarev, “Technology of the Automated Surface Quality Testing,” Messenger of the Kharkov economic university, vol. 1, pp. 86–88,1998.


[9] I. Sh. Nevliudov, A. I. Filipenko, “Method of the Interferential Images Analysis During Testing of Quality Parameters of Fiber-Optical Components Surface,” News of Engineering Sciences Academy of Ukraine: Mechanical engineering and progressive technologies, vol. 4, no. 24, pp. 81–87, 2004.


[10] E. S. Lukin, E. V. Anufrieva, N. A. Popova, B. A. Morozov, “The Analysis of a Microstructure, Surface Quality and Properties of Aluminum Oxide Substrates,” Functional Ceramics, pp. 35–40, 2009.


[11] G. Best, R. Amberger, D. Baddeley, S. Dithmar, R. Heintzmann, C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron, vol. 42, pp. 330–335, 2011.


[12] Yeu-Chuen Huang, Chien Chou, Ling-Yu Chou, Jenn-Chyang Shyu and Ming Chang, “Polarized Optical Heterodyne Profilometer,” Japanese Journal of Applied Physics, vol. 37, no 1, p. 351, 1998.


[13] Lenore McMackin, David G. Voelz and Matthew P. Fetrow, “Multiple wavelength heterodyne array interferometry,” Optics Express, vol. 1, no. 11, pp. 332-337, 1997.


[14] Hung-Chih Hsieh, Yen-Liang Chen, Zhi-Chen Jian, Wang-Tsung Wu and Der-Chin Su1, “Two-wavelength full-field heterodyne interferometric profilometry,” IOP Publishing Ltd Measurement Science and Technology, vol. 20, no. 2, p. 025307, 2009.


[15] K. Kitagawa, J. Electron, “Single-shot surface profiling by multiwavelength interferometry without carrier fringe introduction,” Imaging, vol. 21, no. 2, p. 021107, 2012.


[16] W. Wang, T. Yokozeki, R. Ishijima, M. Takeda, S.G. Hanson, “Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern,” Opt. Express, vol. 14, pp. 10195–10206, 2006.


[17] A. Popiołek-Masajada, B. Sokolenko, I. Augustyniak, J. Masajada, A. Kohoroshun, M. Bacia, “Optical vortex scanning in an aperture limited system,” Opt. Lasers Eng., vol. 55, pp. 105–112, 2014.


[18] J. Masajada, M. Leniec, E. Jankowska, H. Thienpont, H. Ottevaere, V. Gomez, “Deep microstructure topography characterization with optical vortex interferometer,” Opt. Express, vol. 16, pp. 19179–19191, 2008.


[19] J. Masajada, M. Leniec, I. Augustyniak, “Optical vortex scanning inside the Gaussian beam,” J. Opt., vol. 13, p. 03571, 2011.


[20] I. Augustyniak, A. Popiołek-Masajada, J. Masajada, S. Drobczynski, “New scanning technique for the optical vortex microscope,” Appl. Opt., 51, pp. C117–C124, 2012.


[21] Ł. Plociniczak, A. Popiołek-Masajada, M. Szatkowski, D. Wojnowski, “Transformation of the vortex beam in the optical vortex scanning microscope,: Opt. Las. Technol., vol. 81, pp. 127–136, 2016.


[22] Ł. Plociniczak, A. Popiołek-Masajada, J. Masajada, M. Szatkowski, “Analytical model of the optical vortex microscope,” Appl. Opt., vol. 55, pp. B20–B27, 2016.


[23] A. Popiołek-Masajada„ J. Masajada, P. Kurzynowski, “Analytical Model of the Optical Vortex Scanning Microscope with a Simple Phase Object,” Photonics, vol. 4, p. 38, 2017.