Polariton Propagation in Imperfect Resonantly Absorbing Bragg grating

Abstract

The nonlinear polariton transmission through resonantly absorbing Bragg grating (RABG) with randomly varying lattice spacing is studied. In this work are presented the results of numerical simulation of propagation stability of polaritonic solitary wave consisting of matter wave coupled with counter propagating light waves which propagate through dielectric medium, containing periodically placed in the dielectric waveguide thin dielectric films with metallic nanoparticles (or quantum dots, nanoagregates with nonlinear dielectric properties). The influence of lattice spacing deviations from mean value (average) of the lattice spacing is described in the model equations by random multiplicative noise set in the phases of forward and backward electric components of electromagnetic wave. As the initial condition it was used the solitary wave solution of the model describing nonlinear wave propagation in perfect nonlinear RABG. The results of numerical simulations show that phase fluctuations lead to periodic oscillations (with the period 2

References
[1] P. Yeh, A. Yariv, Optics Communications, 19, no. 3, 427-430, (1976).


[2] F. Brechet, P. Roy, J. Marcou, D. Pagnoux, Electronics Letters, 36, 514, (2000).


[3] P. St. J. Russell, Journal of Lightwave Technology, v. 24, no. 12, 4729-4749, (2006).


[4] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, Science, 285, 1537, (1999).


[5] C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, Optics Express, v. 14, no. 26, 13056, (2006).


[6] F. Benabid, J. C. Knight, P. St. J. Russell, Optics Express, v. 10, no. 21, 1195-1203, (2002).


[7] T. Komukai and M. Nakazawa, IEEE Photonic Technology Letters, v. 10, no. 5, 687– 689, (1998).


[8] M. Svalgaard, K. Faerch, and L. U. Andersen, Journal of Lightwave Technology, v. 21, no 9, 2097-2103, (2003).


[9] G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, IEE Proceedings - Optoelectronics, v. 151, no. 2, 119-121, (2004).


[10] K. O. Hill and G. Meltz, Journal of Lighwave Technology, v. 15, no. 8, (1997).


[11] G. Decher, Science, 277, p. 1232, (1997).


[12] D.V. Skryabin, A.V. Yulin, and A. I. Maimistov, Physical Review Letters, 96, 163904, (2006).


[13] I. R. Gabitov, A. O. Korotkevich, A. I. Maimistov, and J. B. McMahon, Applied Physics A: Materials Science and Processing, v. 89, no. 2, 277-281, (2007).


[14] A. I. Maimistov, I. R. Gabitov, and A. O. Korotkevich, Quantum Electronic, 37, 549, (2007).


[15] I. R. Gabitov, A.O. Korotkevich, A.I. Maimistov, and J.B. McMahon, arXiv:nlin/0702049, v1, [nlin.PS].


[16] Ch. Kittel, Introduction to Solid State Physics, Wiley, New York, (1956).


[17] J. M. Ziman, Principles of the Theory of Solids, Cambridge University Press, (1979).


[18] Z. Daozhong, H. Wei, Z. Youlong, L. Zhaolin, C. Bingying, and Y. Guozhen, Physical Review B, 50, 9810, (1994).


[19] E. Hanamura, Physical Review B, 39, 1152, (1989).


[20] A. P. Vinogradov and A. M. Merzlikin, Physical Review E, 70, 026610, (2004).


[21] I. V. Mel’nikov, J. S. Aitchison, B. I. Mantsyzov, Optics Letters, v. 29, no. 3, 289-291, (2004).


[22] P. Y. P. Chen, B. A. Malomed, and P. L. Chu, Physical Review E, 71, 066601, (2005).


[23] E.V. Kazantseva, A. I. Maimistov, Phys. Rev. A, v. 79, 033812, (2009).