Formation of Surface Plasmon-Polariton Vortices at Reflection from Curvilinear Boundary

Abstract

We present the results of simulation of interference of surface plasmon-polaritons (SPPs) which are falling and reflecting from the curvilinear boundary of inhomogeneity area in the metal layer. The plasmon vortices with a screw phase dislocation appear in the singular points of the field as a result of the SPP interference after reflection from the boundary of inhomogeneity in the dovetail form. The position of the plasmon vortices on the surface of metal layer can be controlled by means of the external electrostatic field. Negative charges localized at the control probes cause the change of the boundary curvature of the permittivity of inhomogeneity area on the metal layer, which leads to displacement of the vortex localization points. When the vortex is localized under the readout nanowire probe with angular thread, the maximum or minimum of the signal takes place in the probe depending on the helicity of the thread and the topological charge of the vortex.


Keywords: surface plasmon-polariton, plasmon vortex, nanowire.

References
[1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824-830, 2003.


[2] A. V. Zayats, and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” Journal of Optics A: Pure and Applied Optics, vol. 5, pp. S16-S50, 2003.


[3] S. A. Maier, Plasmonics: Fundamental and Applications, New York: Springer Science+Bussines Media, 2007.


[4] P. Berini, “Long-range surface plasmon polaritons,” Advances in Optics and Photonics, vol. 1, 484-588, 2009.


[5] D. K. Gramotnev, and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit”, Nature Photonics, vol. 4, pp. 83-91, 2010.


[6] M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Optics Express, vol. 19, pp. 22029-22106, 2011.


[7] L. Novotny, and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2012.


[8] O. V. Shulika, and I. A. Sukhoivanov, Contemporary optoelectronics: Materials, metamaterials and device applications, Dordrecht: Springer Science+Bussines Media, 2016.


[9] I. V. Dzedolik, Solitons and nonlinear waves of phonon-polaritons and plasmonpolaritons, New York: Nova Science Publishers, 2016.


[10] A. B. Shesterikov, M. Yu. Gubin, M. G. Gladush, and A. V. Prokhorov, “Formation of plasmon pulses in the cooperative decay of excitons of quantum dots near a metal surface,” Journal of Experimental and Theoretical Physics, vol. 124, no. 1, pp. 18-31, 2017.


[11] F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Physical Review B, vol. 50, pp. 15261-15275, 1994.


[12] B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Physical Review Letters, vol. 77, pp. 1889-1892, 1996.


[13] P. Cheyssac, V. A. Sterligov, S. I. Lysenko, and R. Kofman, “Surface plasmonpolaritons 1. Interaction with 1D objects,” Physical Status Solidi (a), vol. 175, pp. 253-258, 1999.


[14] H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Twodimensional optics with surface plasmon polaritons,” Applied Physics Letters, vol. 81, no. 10, pp. 1762-1764, 2002.


[15] A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon– polariton waves,” Journal of Optics A: Pure and Applied Optics, vol. 7, pp. S85-S89, 2005.


[16] V. N. Konopsky, and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Physical Review Letters, vol. 97, 253904, 2006.


[17] P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, and F. J. Garcia-Vidal, “Transformation optics for plasmonics,” Nano Letters, vol. 10, pp. 1985–1990, 2010.


[18] C. Zhao, J. Zhang, and Y. Liu, “Light manipulation with encoded plasmonic nanostructures,” European Physical Journal of Applied Metamaterials, vol. 1, 6, 2014.


[19] Y.-G. Chen, Y.-H. Chen, and Z.-Y. Li, “Direct method to control surface plasmon polaritons on metal surfaces,” Optics Letters, vol. 39, pp. 339-342, 2014.


[20] S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica, vol. 2, no. 1, pp. 6-13, 2015.


[21] V. Coello, C. E. Garcia-Ortiz, and M. Garcia-Mendez, “Classic plasmonics: wave propagation control at subwavelength scale,” NANO, vol. 10, 1530005, 2015.


[22] Q. Guo, C. Zhang, and X. Hu, “A spiral plasmonic lens with directional excitation of surface plasmons,” Scientific Reports, vol. 6, 32345, 2016.


[23] H. Li, Y. Qu, H. Ullah, B. Zhang, and Z. Zhang, “Controllable multiple plasmonic bending beams via polarization of incident waves,” Optics Express, vol. 25, no. 24, pp. 29659-29666, 2017.


[24] W.-B. Shi, T.-Y. Chen, H. Jing, R.-W. Peng, and M. Wang, “Dielectric lens guides inplane propagation of surface plasmon polaritons,” Optics Express, vol. 25, no. 5, pp. 5772-5780, 2017.


[25] J. Wang, C. Chen, and Z. Sun, “Creation of multiple on-axis foci and ultra-long focal depth for SPPs,” Optics Express, vol. 25, no. 2, pp. 1555-1563, 2017.


[26] Z. Wang, G. Ren, Y. Gao, B. Zhu, and S. Jian, “Plasmonic in-plane total internal reflection: azimuthal polarized beam focusing and application,” Optics Express, vol. 25, no. 20, pp. 23989-23999, 2017.


[27] J. F. Nye, and M. V. Berry. “Dislocations in wave trains,” Proceedings of the Royal Society of London A, vol. 336, pp. 165-190, 1974.


[28] M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Progress in Optics, vol. 53, pp. 293-363, 2009.


[29] M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” Journal of Optics, vol. 19, no. 1, 010401, 2017.


[30] H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Letters, vol. 10, pp. 529-536, 2010.


[31] S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Optics Express, vol. 19, no. 22, pp. 22305- 22315, 2011.


[32] H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics Journal, vol. 7, 4801007, 2015.


[33] A. M. Kamchatnov, and N. Pavloff, “Interference effects in the two-dimensional scattering of microcavity polaritons by an obstacle: phase dislocations and resonances,” European Physical Journal D, vol. 69: 32, 2015.


[34] G. Yuan, Q. Wang, and X. Yuan, “Dynamic generation of plasmonic Moiré fringes using phase-engineered optical vortex beam,” Optics Letters, vol. 37, no. 13, pp. 2715-2717, 2012.


[35] I. V. Dzedolik, and V. Pereskokov, “Formation of vortices by interference of surface plasmon polaritons,” Journal of the Optical Society of America A, vol. 33, no. 5, pp. 1004-1009, 2016.


[36] I. V. Dzedolik, S. Lapayeva, and V. Pereskokov, “Vortex lattice of surface plasmon polaritons,” Journal of Optics, vol. 18, no. 7, 074007, 2016.


[37] I. V. Dzedolik, and V. S. Pereskokov, “Topology of plasmon-polariton vortices on an adaptive mirror,” Atmospheric and Oceanic Optics, vol. 30, no. 2, pp. 203-208, 2017.


[38] V. N. Konopsky, “Operation of scanning plasmon near-field microscope with gold and silver tips in tapping mode: demonstration of subtip resolution,” Optics Communications, vol. 185, pp. 83-93, 2000.


[39] D. V. Kazantsev, and H. Ryssel, “Scanning head for the apertureless near field optical microscope,” Modern Instrumentation, vol. 2,pp. 33-40, 2013.


[40] D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Uspekhi Fizicheskikh Nauk, vol. 187, no. 3, pp. 277-295, 2017.


[41] D. I. Yakubovsky, A. V. Arsenin, Yu. V. Stebunov, D. Yu. Fedyanin, and V. S. Volkov, “Optical constants and structural properties of thin gold films,” Optics Express, vol. 25, no. 21, pp. 25574-25587, 2017.


[42] F. Ruting, F. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Subwavelength chiral surface plasmons that carry tunable orbital angular momentum”, Physical Review B, vol. 86, 075437, 2012.


[43] K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Physical Review Letters, vol. 110, 143603, 2013.