Biocompatibility of Bare Nanoparticles Based on Silicon and Gold for Nervous Cells

Abstract

This work aimed to investigate the biocompatibility of bare (ligand-free) lasersynthesized nanoparticles (NPs) based on silicon (Si) and gold (Au) with primary hippocampal cultures. 1%, 5% and 7% of culture medium were replaced by 0.1 mg/mL NP solution on day 14 of culture development in vitro. Our studies revealed that the NPs caused a dose-dependent cytotoxic effect, which was manifested by an increase the number of dead cells and a decrease of the spontaneous functional calcium activity of neural networks. Au NPs revealed less pronounced cytotoxic effect than Si ones and it can be explained by larger size and better solubility of Si NPs.


Keywords: bare nanoparticles, primary hippocampal cultures, neurotoxicity

References
[1] Kabashin A.V., Timoshenko V.Yu. What theranostic applications could ultrapure laser-synthesized Si nanoparticles have in cancer? Nanomedicine 2016; 11(17): 2247-2250, doi: 10.2217/nnm-2016-0228.


[2] Kim J., Lee N., Hyeon T. Recent development of nanoparticles for molecular imaging. Philos Trans A Math Phys Eng Sci 2017; 375(2107): 1-17, doi: 10.1098/rsta.2017.0022.


[3] Ryu J.H., Koo H., Sun I.C., Yuk S.H., Choi K., Kim K., Kwon I.C. Tumor-targeting multifunctional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev 2012; 64(13): 1447-1458, doi: 10.1016/j.addr.2012.06.012.


[4] Kapse-Mistry S., Govender T., Srivastava R., Yergeri M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front Pharmacol 2014; 5(159): 1-22, doi: 10.3389/fphar.2014.00159.


[5] Vedunova M.V., Mishchenko T.A., Mitroshina E.V., Ponomareva N.V., Yudintsev A.V., Generalova A.N., Deyev S.M., Mukhina I.V., Semyanov A.V., Zvyagin A.V. Cytotoxic effects of upconversion nanoparticles in primary hippocampal cultures. RSC Adv 2016; 6: 33656-33665, doi: 10.1039/C6RA01272H.


[6] Maximova K., Aristov A.I., Sentis M., Kabashin A.V. Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water. Nanotechnology 2015; 26(6): 065601, doi: 10.1088/0957-4484/26/6/065601.


[7] Blandin P., Maximova K.A., Gongalsky M.B., Sanchez-Royo J.F., Chirvony V.S., Sentis M., Timoshenko V.Yu., Kabashin A.V. Femtosecond laser fragmentation from waterdispersed microcolloids: toward fast controllable growth of ultrapure Si-basednanomaterials for biological applications. J. Mater. Chem. B 2013; 1: 2489-2495, doi: 10.1039/C3TB20285B.


[8] Al-Kattan A., Ryabchikov Y.V., Baati T., Chirvony V., Sanchez-Royo J. F., Estève M-A., Sentis M., Timoshenko V.Yu., Braguer D., Kabashin A.V. Ultrapure laser-synthesized Si nanoparticles with variable oxidation state for biomedical applications. J. Mater. Chem B 2016; 4: 7852, doi: 10.1039/C6TB02623K.


[9] Vedunova M., Sakharnova T., Mitroshina E., Perminova M., Pimashkin A., Zakharov Yu., Dityatev A., Mukhina I. Seizure-like activity in hyaluronidase-treated dissociated hippocampal cultures. Frontiers in cellular neuroscience 2013; 7(149): 1-10, doi: 10.3389/fncel.2013.00149.


[10] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983; 65(1–2): 55–63.


[11] Anikina L.V., Pukhov S.A., Dubrovskaya E.S., Afanas’eva S.V., Klochkov S.G. Comparative definition of cell viability by MTT and Resazurin. Fundamentalnie issledovania 2014; 12(7): 1423–1427.


[12] Shirokova О.М., Frumkina L.Е., Vedunova М.V., Mitroshina Е.V., Zakharov Y.N., Khaspekov L.G., Mukhina I.V. Morphofunctional patterns of neuronal network developing in dissociated hippocampal cell cultures. Sovremennye tehnologii v medicine 2013; 5(2): 6-13.


[13] Agrba E.A., Mukhina I.V. Spatio-temporal characteristic of neuronal network activity of primary hippocampal cultures. Vestnik of Lobachevsky University of Nizhni Novgorod 2013; 4(1): 139–144.