Minimally Invasive Surgery, Implantable Sensors, and Personalized Therapies

Abstract

Glaucoma management has changed dramatically over the last decades, through clinical advances and technological revolutions. This review discusses the latest innovations and challenges faced in the field around three major axes: minimally-invasive glaucoma surgery (MIGS), implantable sensors and injectable therapeutics. Indeed, the vast number of recently developed MIGS techniques has not only provided clinicians with a wide range of therapeutic options, but they have also enabled them to adjust their therapies more finely which may have contributed a more patient-centric decision-making process. Yet, despite considerable advances in the field, the wide heterogeneity in clinical trial designs blurs the surgical outcomes, specificities and indications. Thus, more high-quality data are required to make the choice of a specific MIGS procedure more than an educated guess. Beyond the scope of MIGS, the potential of IOP telemetry for self-assessment of IOP-control through implantable sensors is developing into a real option for clinicians and an empowering opportunity for patients. Indeed, providing patients with direct feedback enables them to take control and have a clearer representation of their care, in turn leading to a better control of the disease. However, there are potential issues with self-monitoring of IOP, such as increased anxiety levels induced by measured IOP fluctuations and peaks, leading to patients self-treating during IOP spikes and additional office visits. Furthermore, the advent of implantable therapeutics may soon provide yet another step towards personalized glaucoma treatment, by offering not only an efficient alternative to current treatments, but also a therapeutic option that may better adapt to patients’ lifestyle. After several decades of relative stagnation through the last century, glaucoma has now entered what many view as a golden age for the specialty. Like every revolution, this one brings its fair share of uncertainty, clinical questioning and uneasy periods of adaptation to ever-changing expectations. Yet, while it is impossible to guess what the landscape of glaucoma surgery will be like in ten or fifteen years, data suggest a bright outlook both for patients and clinicians.


Keywords: Glaucoma; MIGS; Quality of Life; Telemetry; Eyemate; Bimatoprost SR

Keywords:

NA

References
1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Yu. Global prevalence of glaucoma and projections of glaucoma burden through 2040. A systematic review and meta-analysis. Ophthalmology 2014;121:2081–2090.

2. Chen CW. Enhancing intraocular pressure controlling effectiveness of trabeculotomy by local application of mitomycin C. Trans Asia Pac Acad Ophthalmol 1983;9:172–177.

3. Gedde SJ. The Tube Versus Trabeculectomy Study Group. Results from the Tube Versus Trabeculectomy Study. Middle East Afr J Ophthalmol 2009;16:107–111.

4. Saheb H, Ahmed, II. Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol 2012;23:96–104.

5. Gottanka J, Chan D, Eichhorn M, Lutjen-Drecoll E, Ethier CR. Effects of TGF-beta2 in perfused human eyes. Invest Ophthalmol Vis Sci 2004;45:153–158.

6. Fautsch MP, Johnson DH. Second ARVO/Pfizer Research Institute Working Group. Aqueous humor outflow. What do we know? Where will it lead us? Invest Ophthalmol Vis Sci 2006;47:4181–4187.

7. Grant W. Further studies on facility of flow through the trabecular meshwork. AMA Arch Ophthalmol 1958;60:523e33.

8. Rosenquist R, Epstein D, Melamed S, Johnson M, Grant WM. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res 1989;8:1233e40.

9. Andrew NH, Akkach S, Casson RJ. A review of aqueous outflow resistance and its relevance to micro-invasive glaucoma surgery. Surv Ophthalmol 2020;65:18–31.

10. Ellingsen BA, Grant WM. Trabeculotomy and sinusotomy in enucleated human eyes. Invest Ophthalmol 1972;11:21e8.

11. Hann CR, Vercnocke AJ, Bentley MD, Jorgensen SM, Fautsch MP. Anatomic changes in Schlemm’s canal and collector channels in normal and primary open-angle glaucoma eyes using low and high perfusion pressures. Invest Ophthalmol Vis Sci 2014;55:5834e41.

12. Zhao Z, Zhu X, He W, Jiang C, Lu Y. Schlemm’s canal expansion after uncomplicated phacoemulsification surgery: an optical coherence tomography study. Invest Ophthalmol Vis Sci 2016;57:6507–6512.

13. Johnstone M. Intraocular pressure control through linked trabecular meshwork and collector channel motion. In: Knepper PA, Samples JR, editors. Glaucoma research and clinical advances 2016 to 2018. Amsterdam, Netherlands: Kugler Publications; 2016.

14. Gillmann K, Bravetti GE, Mermoud A, Mansouri K. A prospective analysis of iStent inject microstent positioning: schlemm canal dilatation and intraocular pressure correlations. J Glaucoma. 2019;28:613–621.

15. Huang A, Penteado R, Papoyan V, Voskanyan L, Weinreb RN. Aqueous angiographic outflow improvement after trabecular microbypass in glaucoma patients. Ophthalmol Glaucoma 2019;2:11–21.

16. Ellingsen BA, Grant WM. The relationship of pressure and aqueous outflow in enucleated human eyes. Invest Ophthalmol 1971;10:430e7.

17. Huang AS, Saraswathy S, Dastiridou A, Begian A, Mohindroo C, Tan JCH, et al. Aqueous angiographymediated guidance of trabecular bypass improves angiographic outflow in human enucleated eyes. Invest Ophthalmol Vis Sci 2016;57:4558e65.

18. Weinreb RN. Uveoscleral outflow: the other outflow pathway. J Glaucoma 2000;9:343–345.

19. Weinreb RN, Toris CB, Gabelt BT, Lindsey JD, Kaufman PL. Effects of prostaglandins on the aqueous humor outflow pathways. Surv Ophthalmol 2002;47:S53–S64.

20. Toris CB, Yablonski ME, Wang YL, Camras CB. Aqueous humor dynamics in the aging human eye. Am J Ophthalmol 1999;127:407–412.

21. Figus M, Posarelli C, Passani A, Albert TG, Oddone F, Sframeli AT. The supraciliary space as a suitable pathway for glaucoma surgery: ho-hum or home run? Surv Ophthalmol 2017;62:828e37.

22. Emi K, Pederson JE, Toris CB. Hydrostatic pressure of the suprachoroidal space. Invest Ophthalmol 1989;30:233e8.

23. Kelly DE, Hageman GS, McGregor JA. Uveal compartmentalization in the hamster eye revealed by fine structural and tracer studies: implications for uveoscleral outflow. Invest Ophthalmol Vis Sci 1983;24:1288e304.

24. Ring HG, Fujino T. Observations on the anatomy and pathology of the choroidal vasculature. Arch Ophthalmol 1967;78:431–444.

25. Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: a review. Exp Eye Res 2017;158:94e111.

26. Nakakura S, Noguchi A, Tabuchi H, Kiuchi Y. Bimatoprostinduced late-onset choroidal detachment after trabeculectomy: a case report and review of the literature. Medicine 2017;96:e5927.

27. Hernández Pardines F, Molina Martín JC, Fernández Montalvo L, Balsalobre FA. Bilateral choroidal effusion after selective laser trabeculoplasty. Arch Soc Esp Oftalmol 2017;92:295–298.

28. Coban DT, Erol MK, Yucel O. Hemorrhagic choroidal detachment after use of anti-glaucomatous eye drops: case report. Arq Bras Oftalmol 2013;76:309–310.

29. Krishnamurthy R, Senthil S, Garudadri CS. Late postoperative choroidal detachment following an uneventful cataract surgery in a patient on topical latanoprost. BMJ Case Rep 2015;2015;pii: bcr2015211408.

30. Sagara T, Gaton DD, Lindsey JD, Gabelt BT, Kaufman PL, Weinreb RN. Topical prostaglandin F2alpha treatment reduces collagen types I, III, and IV in the monkey uveoscleral outflow pathway. Arch Ophthalmol 1999;117:794–801.

31. Gardiner BS, Smith DW, Coote M, Crowston JG. Computational modeling of fluid flow and intraocular pressure following glaucoma surgery. PLOS ONE 2010;5:1–11.

32. Razeghinejad MR, Spaeth GL. A history of the surgical management of glaucoma. Optom Vis Sci 2011;88:E39– E47.

33. Schlunck G, Meyer-ter-Vehn T, Klink T, Grehn F. Conjunctival fibrosis following filtering glaucoma surgery. Exp Eye Res 2016;142:76–82.

34. Yamanaka O, Kitano-Izutani A, Tomoyose K, Reinach PS. Pathobiology of wound healing after glaucoma filtration surgery. BMC Ophthalmol 2015;15:157.

35. Baudouin C, Hamard P, Liang H, Creuzot-Garcher C, Bensoussan L, Brignole F. Conjunctival epithelial cell expression of interleukins and inflammatory markers in glaucoma patients treated over the long term. Ophthalmology 2004;111:2186e2192.

36. Stalmans I, Sunaric Megevand G, Cordeiro MF, Hommer A, Rossetti L, Goni F, et al. Preservative-free treatment in glaucoma: who, when, and why. Eur J Ophthalmol 2013;23:518e525.

37. Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J 2006;20:811e827.

38. Pedersen JA, Lichter S, Swartz MA. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces. J Biomech 2010;43:900e905.

39. Guthoff R, Klink T, Schlunck G, Grehn F. In vivo confocal microscopy of failing and functioning filtering blebs: results and clinical correlations. J Glaucoma 2006;15:552e558.

40. Lopilly Park HY, Kim JH, Ahn MD, Park CK. Level of vascular endothelial growth factor in tenon tissue and results of glaucoma surgery. Arch Ophthalmol 2012;130:685e689.

41. Takai Y, Tanito M, Ohira A. Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest Ophthalmol Vis Sci 2012;53:241e247.

42. Pro MJ, Freidl KB, Neylan CJ, Sawchyn AK, Wizov SS, Moster MR. Ranibizumab versus mitomycin C in primary trabeculectomy – a pilot study. Curr Eye Res 2014;40:510– 515.

43. Van de Velde S, Van Bergen T, Vandewalle E, Kindt N, Castermans K, Moons L, et al. Rho kinase inhibitor AMA0526 improves surgical outcome in a rabbit model of glaucoma filtration surgery. Prog Brain Res 2015;220:283–297.

44. Tan SZ, Walkden A, Au L. One-year result of XEN45 implant for glaucoma: efficacy, safety, and postoperative management. Eye 2018;32:324–332.

45. Sheybani A, Reitsamer H, Ahmed II. Fluid dynamics of a novel micro-fistula implant for the surgical treatment of glaucoma. Invest Ophthalmol Vis Sci 2015;56:4789–4795.

46. Gillmann K, Bravetti GE, Mermoud A, Mansouri K. Anterior chamber XEN gel stent movements: the impact on corneal endothelial cell density. J Glaucoma 2019;28:e93–e95.

47. Gillmann K, Mansouri K, Bravetti GE, Mermoud A. Chronic intraocular inflammation as a risk factor for XEN gel stent occlusion: a case of microscopic examination of a fibrinobstructed XEN Stent. J Glaucoma 2018;27:739–741.

48. Ndulue JK, Rahmatnejad K, Sanvicente C, Wizov SS, Moster MR. Evolution of cyclophotocoagulation. J Ophthalmic Vis Res 2018;13:55–61.

49. Schuman JS, Bellows AR, Shingleton BJ, Latina MA, Allingham RR, Belcher CD, et al. Contact transscleral Nd:YAG laser cyclophotocoagulation. Midterm results. Ophthalmology 1992;99:1089–1094; discussion 1095.

50. Ishida K. Update on results and complications of cyclophotocoagulation. Curr Opin Ophthalmol 2013;24:102–110.

51. Sanchez FG, Peirano-Bonomi JC, Grippo TM. Micropulse transscleral cyclophotocoagulation: a hypothesis for the ideal parameters. Med Hypothesis Discov Innov Ophthalmol 2018;7:94–100.

52. Egbert PR, Fladoyor S, Budenz DL, Dadzie P, Byrd S. Diode laser transscleral cyclophotocoagulation as a primary surgical treatment for primary open-angle glaucoma. Arch Ophthalmol 2001;119:345–350.

53. Pokroy R, Greenwald Y, Pollack A, Bukelman A, Zalish M. Visual loss after diode laser cyclophotocoagulation for primary open-angle glaucoma and neovascular glaucoma. Ophthalmic Surg Laser Imag 2008;39:22–29.

54. Michelessi M, Bicket AK, Lindsley K. Cyclodestructive procedures for non-refractory glaucoma. Cochrane Database Syst Rev 2018;2018:CD009313.

55. Gloor BR, Hans Goldmann (1899–1991). Eur J Ophthalmol, 2010;20:1–11.

56. Kouchaki B, Hashemi H, Yekta A, Khabazkhoob M. Comparison of current tonometry techniques in measurement of intraocular pressure. J Curr Ophthalmol 2017;29:92–97.

57. Kawai M, Kawai N, Nakabayashi S, Kinouchi R, Yoshida A. Comparison of intraocular pressure variability in glaucoma measured by multiple clinicians with those by one clinician. Int Ophthalmol 2017;37:95–101.

58. McCafferty S, Lim G, Duncan W, Enikov ET, Schwiegerling J, Levine J, et al. Goldmann tonometer error correcting prism: clinical evaluation. Clin Ophthalmol 2017;11:835– 840.

59. Pearce JG, Maddess T. The clinical interpretation of changes in intraocular pressure measurements using Goldmann applanation tonometry: a review. J Glaucoma 2019;28:302–306.

60. Mansouri K, Weinreb RN, Medeiros FA. Is 24-hour intraocular pressure monitoring necessary in glaucoma? Semin Ophthalmol 2013;28:157–164.

61. Cheng J, Xiao M, Xu H, Fang S, Chen X, Kong X, et al. Seasonal changes of 24-hour intraocular pressure rhythm in healthy Shanghai population. Medicine 2016;95:e4453.

62. Nuyen B, Mansouri K. Detecting IOP fluctuations in glaucoma patients. Open Ophthalmol J 2016;10:44–55.

63. Matlach J, Bender S, König J, Binder H, Pfeiffer N, Hoffmann EM. Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin Ophthalmol 2019;13:9–16.

64. Konstas AG, Kahook MY, Araie M, Katsanos A, Quaranta L, Rossetti L, et al. Diurnal and 24-h intraocular pressures in glaucoma: monitoring strategies and impact on prognosis and treatment. Adv Ther 2018;35:1775–1804.

65. Ittoop SM, et al . Systematic review of current devices 5 for 24-h intraocular pressure monitoring. Adv Ther 2016;33:1679–1690.

66. Melki S, Todani A, Cherfan G. An implantable intraocular pressure transducer: initial safety outcomes. JAMA Ophthalmol 2014;132:1221–1225.

67. Dick HB, Schultz T, Gerste RD. Miniaturization in glaucoma monitoring and treatment: a review of new technologies that require a minimal surgical approach. Ophthalmol Ther 2019;8:19–30.

68. Gillmann K, Bravetti GE, Niegowski LJ, et al. Using sensors to estimate intraocular pressure: a review of intraocular pressure telemetry in clinical practice. Exp Rev Ophthalmol 2019;14:6, 263–276.6

69. Koutsonas A, et al. Implantation of a novel telemetric intraocular pressure sensor in patients with glaucoma (ARGOS study): 1-year results. Invest Ophthalmol Vis Sci 2015;56:1063–1069.7

70. Rüfer F, Gillmann K, Choritz L, et al. The value of intraocular pressure telemetry in monitoring the therapeutic effect of glaucoma medications. J Glaucoma 2020;29:e38–e40.8

71. Eyawo O, Nachega J, Lefebvre P, et al. Efficacy and safety of prostaglandin analogues in patients with predominantly primary open-angle glaucoma or ocular hypertension: a meta-analysis. Clin Ophthalmol 2009;3:447–456.9

72. Mansouri K, Iliev ME, Rohrer K, et al. Compliance and knowledge about glaucoma in patients at tertiary glaucoma units. Int Ophthalmol 2011;31:369–376.

73. Robin A, Grover DS. Compliance and adherence in glaucoma management. Indian J Ophthalmol 2011;59:S93–S96.

74. Okeke CO, Quigley HA, Jampel HD, et al. Adherence with topical glaucoma medication monitored electronically the Travatan Dosing Aid study. Ophthalmology 2009;116:191– 11 199.

75. Wang BB, Lin MM, Nguyen T, et al. Patient attitudes toward novel glaucoma drug delivery approaches. Digit J 12 Ophthalmol 2018;24:16–23.

76. Lewis RA, Christie WC, Day DG, et al. Bimatoprost sustained-release implants for glaucoma therapy: 6-month results from a phase I/II clinical trial. Am J Ophthalmol 13 2017;175:137–147.

77. Lee SS, Almazan A, Decker S, et al. Intraocular pressure effects and mechanism of action of topical versus sustained-release bimatoprost. Transl Vis Sci Technol 14 2019;8:15.

78. Welge-Lüssen U, Weise S, Yu AL. Assessing the adherence behavior of glaucoma patients to topical eye drops. Patient Prefer Adherence 2014;9:17–23.