Efficacy of Intravitreal Dexamethasone Implant in Different Patterns of Diabetic Macular Edema

Abstract

Purpose: Different patterns of diabetic macular edema (DME) suggest different pathogenesis and drug response. We evaluated the outcomes after intravitreal dexamethasone (DEX) implant for DME with or without serous retinal detachment (SRD).


Methods: In this retrospective study, 22 naïve patients (23 eyes) with DME who underwent a single DEX implant were evaluated. Based on the optical coherence tomographic pattern of DME, 12 eyes had a cystoid macular edema pattern (Group 1) and 11 eyes had an SRD pattern (Group 2). The best-corrected visual acuity (BCVA), central retinal thickness (СRТ), central retinal volume (CRV), SRD height (SRDh), and intraocular pressure (IOP) were recorded before and at two and four months after the treatment.


Results: There were no significant differences between the groups regarding demographic, clinical data and outcomes at baseline. In Group 1, the CRT and CRV significantly decreased at two months (P = 0.002 and P = 0.01, respectively), while the BCVA significantly improved at four months (P = 0.03). In Group 2, the CRT and CRV significantly improved (P < 0.01 and P ≤ 0.01, respectively) during the follow-up period. At four months, both groups showed a recurrence of DME, Group 1 in particular (two-month CRT reduction, –149 ± 127 μm vs four-month CRT reduction, –72 ± 174 μm; P = 0.04). The mean reduction in CRV was significantly different at four months (Group 1, –0.49 ± 1.7 mm3 vs Group 2, –1.3 ± 1.3 mm3; P = 0.04). In Group 2, the SRDh significantly decreased at two (P = 0.01) and four months (P = 0.01). Four cases with elevated IOP were managed.


Conclusion: DEX implants were found to be effective in different patterns of DME. The SRD pattern may predict a longer-lasting morphologic efficacy.

Keywords:

Dexamethasone Implant, Diabetic Macular Edema, OCT, Ozurdex®, Subretinal Detachment

References
1. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012;35:556–564.

2. Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol 1999;127:688–693.

3. Trichonas G, Kaiser PK. Optical coherence tomography imaging of macular oedema. Br J Ophthalmol 2014;98:24– 29.

4. Kim BY, Smith SD, Kaiser PK. Optical coherence tomographic patterns of diabetic macular edema. Am J Ophthalmol 2006;142:405–412.

5. Catier A, Tadayoni R, Paques M, Erginay A, Haouchine B, Gaudric A, et al. Characterization of macular edema from various etiologies by optical coherence tomography. Am J Ophthalmol 2005;140:200–206.

6. Ozdemir H, Karacorlu M, Karacorlu S. Serous macular detachment in diabetic cystoid macular oedema. Acta Ophthalmol Scan 2005;83:63–66.

7. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 1998;47:1953–1959.

8. Otani T, Kishi S. Tomographic assessment of vitreous surgery for diabetic macular edema. Am J Ophthalmol 2000;129:487–494.

9. Horii T, Murakami T, Nishijima K, Akagi T, Uji A, Arakawa N, et al. Relationship between fluorescein pooling and optical coherence tomographic reflectivity of cystoid spaces in diabetic macular edema. Ophthalmology 2012;119:1047– 1055.

10. Ford JA, Lois N, Royle P, Clar C, Shyangdan D, Waugh N. Current treatments in diabetic macular oedema: systematic review and meta-analysis. BMJ Open 2013;1:3.

11. Boyer DS, Yoon YH, Belfort R Jr, Bandello F, Maturi RK, Augustin AJ, et al. Ozurdex MEAD Study Group. Threeyear, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 2014;121:1904–1914.

12. Kuppermann BD, Chou C, Weinberg DV, Whitcup SM, Haller JA, Blumenkranz MS, et al. Intravitreous dexamethasone effects on different patterns of diabetic macular edema. Arch Ophthalmol 2010;128:642–643.

13. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol 1985;103:1796–1806.

14. Vujosevic S, Torresin T, Berton M, Bini S, Convento E, Midena E. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphological and functional entities. Am J Ophthalmol 2017;181:149–155.

15. Guigou S, Pommier S, Meyer F, Hajjar C, Merite PY, Parrat E, et al. Efficacy and safety of intravitreal dexamethasone implant in patients with diabetic macular edema. Ophthalmologica 2015;233:169–75.

16. Mastropasqua R, Toto L, Borrelli E, Di Antonio L, De Nicola C, Mastrocola A, et al. Morphology and function over a one-year follow up period after intravitreal dexamethasone implant (Ozurdex) in patients with diabetic macular edema. PLoS ONE 2015;10:e0145663.

17. Matonti F, Pommier S, Meyer F, Hajjar C, Merite PY, Parrat E, et al. Long-term efficacy and safety of intravitreal dexamethasone implant for the treatment of diabetic macular edema. Eur J Ophthalmol 2016;26:454–459.

18. Aknin I, Melki L. Longitudinal study of sustained-release dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmologica 2016;235:187– 188.

19. Pareja-Ríos A, Ruiz-de la Fuente-Rodríguez P, Bonaque- González S, López-Gálvez M, Lozano-López V, Romero- Aroca P. Intravitreal dexamethasone implants for diabetic macular edema. Int J Ophthalmol 2018;11:77–82.

20. Castro-Navarro V, Cervera-Taulet E, Navarro-Palop C, Monferrer-Adsuara C, Hernández-Bel L, Montero- Hernández J. Intravitreal dexamethasone implant Ozurdex® in naïve and refractory patients with different subtypes of diabetic macular edema. BMC Ophthalmol 2019;19:15.

21. Gaucher D, Sebah C, Erginay A, Haouchine B, Tadayoni R, Gaudric A, et al. Optical coherence tomography features during the evolution of serous retinal detachment in patients with diabetic macular edema. Am J Ophthalmol 2008;145:289–296.

22. Kim M, Lee P, Kim Y, Yu SY, Kwak HW. Effect of intravitreal bevacizumab based on optical coherence tomography patterns of diabetic macular edema. Ophthalmologica 2011;226:138–144.

23. Shimura M, Yasuda K, Yasuda M, Nakazawa T. Visual outcome after intravitreal bevacizumab depends on the optical coherence tomographic patterns of patients with diffuse diabetic macular edema. Retina 2013;33:740–747.

24. Wu PC, Lai CH, Chen CL, Kuo CN. Optical coherence tomographic patterns in diabetic macula edema can predict the effects of intravitreal bevacizumab injection as primary treatment. J Ocul Pharmacol Ther 2012;28:59–64.

25. Roh MI, Kim JH, Kwon OW. Features of optical coherence tomography are predictive of visual outcomes after intravitreal bevacizumab injection for diabetic macular edema. Ophthalmologica 2010;224:374–380.

26. Shimura M, Yasuda K, Nakazawa T, Hirano Y, Sakamoto T, Ogura Y, et al. Visual outcome after intravitreal triamcinolone acetonide depends on optical coherence tomographic patterns in patients with diffuse diabetic macular edema. Retina 2011;31:748–754.

27. Murakami T, Nishijima K, Akagi T, Uji A, Horii T, Ueda-Arakawa N, et al. Optical coherence tomographic reflectivity of photoreceptors beneath cystoid spaces in diabetic macular edema. Invest Ophthalmol Vis Sci 2012;53:1506–1511.

28. Chang-Lin JE, Attar M, Acheampong AA, Robinson MR, Whitcup SM, Kuppermann BD, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci 2011;52:80–86.

29. Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, Sellam A, et al. Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res 2018;63:20–68.

30. Takeuchi A, Kricorian G, Marmor MF. Albumin movement out of the subretinal space after experimental retinal detachment. Invest Ophthalmol Vis Sci 1995;36:1298– 1305.

31. Kang SW, Park CY, Ham DI. The correlation between fluorescein angiographic and optical coherence tomographic features in clinically significant diabetic macular edema. Am J Ophthalmol 2004;137:313–322.

32. Soliman W, Sander B, Jorgensen TM. Enhanced optical coherence patterns of diabetic macular oedema and their correlation with the pathophysiology. Acta Ophthalmol Scan 2007;85:613–617.

33. Augustin A, Loewenstein A, Kuppermann BD. Macular edema. General pathophysiology. Dev Ophthalmol 2010;47:10–26.

34. Scholl S, Augustin A, Loewenstein A, Rizzo S, Kupperman B. General pathophysiology of macular edema. Eur J Ophthalmol 2011;21:10–19.

35. Xu HZ, Le YZ. Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Invest Ophthalmol Vis Sci 2011;52:2160–2164.

36. Weinberger D, Fink-Cohen S, Gaton DD, Priel E, Yassur Y. Non-retinovascular leakage in diabetic maculopathy. Br J Ophthalmol 1995;79:728–731.

37. Spaide R, Yannuzzi L. Manifestations and pathophysiology of serous detachment of the retinal pigment epithelium and retina. In: Marmor M, Wolfensberger T, editors. The retinal pigment epithelium: function and disease. New York, New York: Oxford University Press, 1998:439–455.

38. Nagaoka T, Kitaya N, Sugawara R, Yokota H, Mori F, Hikichi T. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol 2004;88:1060–1063.

39. Semeraro F, Morescalchi F, Cancarini A, Russo A, Rezzola S, Costagliola C. Diabetic retinopathy, a vascular and inflammatory disease: therapeutic implications. Diabetes Metab 2019;45:517–527.

40. Iglicki M, Busch C, Zur D, Okada M, Mariussi M, Chhablani JK, et al. Dexamethasone implant for diabetic macular edema in naïve compared with refractory eyes: the International Retina Group real-life 24-month multicenter study. The IRGREL-DEX study. Retina 2019;39:44–51.