Genetic Basis of Primary Angle Closure Glaucoma: The Role of Collagens and Extracellular Matrix


This is an Editorial and does not have an abstract.



1. Ray K, Mukhopadhyay A, Acharya M. Recent advances in molecular genetics of glaucoma. Mol Cell Biochem 2003;253:223–231.

2. Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY. Global data on blindness. B World Health Organ 1995;73:115–121.

3. Tamm ER, Braunger BM, Fuchshofer R. Intraocular pressure and the mechanisms involved in resistance of the aqueous humor flow in the trabecular meshwork outflow pathways. Prog Mol Biol Transl 2015;134:301–314.

4. Souma T, Tompson SW, Thomson BR, Siggs OM, Kizhatil K, Yamaguchi S, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest 2016;126:2575–2587.

5. Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 1997;6:641– 647.

6. Ali M, McKibbin M, Booth A, Parry DA, Jain P, Riazuddin SA, et al. Null mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet 2009;84:664–671.

7. Narooie-Nejad M, Paylakhi SH, Shojaee S, Fazlali Z, Rezaei Kanavi M, Nilforushan N, et al. Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. Hum Mol Genet 2009;18:3969–3977.

8. Sakurada Y, Mabuchi F. Advances in glaucoma genetics. Prog Brain Res 2015;220:107–126.

9. Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, et al. Identification of a gene that causes primary open angle glaucoma. Science 1997;275:668–670.

10. Monemi S, Spaeth G, DaSilva A, Popinchalk S, Ilitchev E, Liebmann J, et al. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet 2005;14:725–733.

11. Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 2002;295:1077–1079.

12. Pasutto F, Matsumoto T, Mardin CY, Sticht H, Brandstatter JH, Michels-Rautenstrauss K, et al. Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am J Hum Genet 2009;85:447–456.

13. Fingert JH, Robin AL, Stone JL, Roos BR, Davis LK, Scheetz TE, et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum Mol Genet 2011;20:2482–2494.

14. Bonomi L. Epidemiology of angle-closure glaucoma. Acta Ophthalmol Scand 2002;236:11–13.

15. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Brit J Ophthalmol 2006;90:262–267.

16. Cedrone C, Mancino R, Cerulli A, Cesareo M, Nucci C. Epidemiology of primary glaucoma: prevalence, incidence, and blinding effects. Prog Brain Res 2008;173:3–14.

17. Suri F, Yazdani S, Chapi M, Safari I, Rasooli P, Daftarian N, et. al. COL18A1 is a candidate eye iridocorneal angleclosure gene in humans. Hum Mol Genet 2018;27:3772–3786.

18. Vithana EN, Khor CC, Qiao C, Nongpiur ME, George R, Chen LJ, et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat Genet 2012;44:1142–1146.

19. Nongpiur ME, Khor CC, Jia H, Cornes BK, Chen LJ, Qiao C, et al. ABCC5, a gene that influences the anterior chamber depth, is associated with primary angle closure glaucoma. PLOS Genet 2014;10:e1004089.

20. Khor CC, Do T, Jia H, Nakano M, George R, Abu-Amero K, et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet 2016;48:556–562.

21. Wang IJ, Chiang TH, Shih YF, Lu SC, Lin LL, Shieh JW, et al. The association of single nucleotide polymorphisms in the MMP-9 genes with susceptibility to acute primary angle closure glaucoma in Taiwanese patients. Mol Vis 2006;12:1223–1232.

22. Awadalla MS, Thapa SS, Burdon KP, Hewitt AW, Craig JE. The association of hepatocyte growth factor (HGF) gene with primary angle closure glaucoma in the Nepalese population. Mol Vis 2011;17:2248–2254.

23. Awadalla MS, Thapa SS, Hewitt AW, Craig JE, Burdon KP. Association of eNOS polymorphisms with primary angle-closure glaucoma. Invest Ophthalmol Vis Sci 2013;54:2108–2114.

24. Ayub H, Khan MI, Micheal S, Akhtar F, Ajmal M, Shafique S, et al. Association of eNOS and HSP70 gene polymorphisms with glaucoma in Pakistani cohorts. Mol Vis 2010;16:18–25.

25. Shi H, Zhang J, Zhu R, Hu N, Lu H, Yang M, et al. Primary angle closure and sequence variants within MicroRNA binding sites of genes involved in eye development. PLOS ONE 2016;11:e0166055.

26. Congdon NG, Youlin Q, Quigley H, Hung PT, Wang TH, Ho TC, et al. Biometry and primary angle-closure glaucoma among Chinese, white, and black populations. Ophthalmology 1997;104:1489–1495.

27. Foster PJ, Alsbirk PH, Baasanhu J, Munkhbayar D, Uranchimeg D, Johnson GJ. Anterior chamber depth in Mongolians: variation with age, sex, and method of measurement. Am J Ophthalmol 1997;124:53–60.

28. Salmon JF. Predisposing factors for chronic angle-closure glaucoma. Prog Retin Eye Res 1999;18:121–132.

29. Yousefian A, Shokoohi-Rad S, Abbaszadegan MR, Morshedi Rad D, Zargari S, Milanzadeh S. et al. Evaluation of five susceptible primary angle closure glaucomaassociated genetic polymorphisms in north east of Iran revealed the significant correlation of rs3816415, rs736893, rs494379 and rs1258267 with the disease. J Ophthal Vis Res 2019.

30. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 2013;45:1328.

31. Consortium G. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 2015;348:1238.

32. Huang W, Fan Q, Wang W, Zhou M, Laties AM, Zhang X. Collagen: a potential factor involved in the pathogenesis of glaucoma. Med Sci Monitor Basic Res 2013;19:237–240.

33. Vithana EN, Aung T, Khor CC, Cornes BK, Tay WT, Sim X, et al. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet 2011;20:649–658.

34. Aihara M, Lindsey JD, Weinreb RN. Ocular hypertension in mice with a targeted type I collagen mutation. Invest Ophthalmol Vis Sci 2003;44:1581–1585.

35. Sawaguchi S, Yue BY, Fukuchi T, Abe H, Suda K, Kaiya T, et al. Collagen fibrillar network in the optic nerve head of normal monkey eyes and monkey eyes with laser-induced glaucoma–a scanning electron microscopic study. Curr Eye Res 1999;18:143–149.

36. Suri F, Yazdani S, Elahi E. Glaucoma in iran and contributions of studies in Iran to the understanding of the etiology of glaucoma. J Ophthal Vis Res 2015;10:68–76.

37. Inamori Y, Ota M, Inoko H, Okada E, Nishizaki R, Shiota T, et al. The COL1A1 gene and high myopia susceptibility in Japanese. Hum Genet 2007;122:151–157.

38. Zhang D, Shi Y, Gong B, He F, Lu F, Lin H, et al. An association study of the COL1A1 gene and high myopia in a Han Chinese population. Mol Vis 2011;17:3379–3383.

39. Ahram DF, Cook AC, Kecova H, Grozdanic SD, Kuehn MH. Identification of genetic loci associated with primary angle-closure glaucoma in the basset hound. Mol Vis 2014;20:497–510.