Histopathology of Corneal Lenticules Obtained from Small Incision Lenticule Extraction (SMILE) versus Microkeratome Excision

Abstract

Purpose: To study the alterations on the lenticules extracted after femtosecond (Femto) small incision lenticule extraction (SMILE) versus the corneal free cap removed using a microkeratome.
Methods: The visuMax (500 kHz; laser energy: 180 nJ) was used for small-incision lenticule extraction. Free caps from human cadaveric corneas were excised by microkeratome. The collected lenticules were examined with the light and transmission electron microscope (TEM) for histological analysis, DNA fragmentation was assessed by agarose gel electrophoresis, DNA damage was evaluated using comet assay, and corneal proteins secondary structure was assessed by Fourier transform infrared spectroscopy (FTIR).
Results: Light microscopic examination showed the presence of more edematous stroma under Femto SMILE than under free cap with a percentage change of 101.6%. In the Femto SMILE group, TEM examination showed pyknotic keratocytes, disruption, and cavitation of the collagen arrays stromal area under Femto SMILE. The DNA fragmentation for the Femto SMILE group revealed one undefined band with a size of 1.1 Kbp. The comet assay analysis indicated the presence of 3% and 8.0% tailed cells for the free cap and Femto SMILE groups, respectively. The tail lengths were 1.33 ± 0.16 and 1.67 ± 0.13 μm (P < 0.01), the percentage of tail DNA was 1.41 ± 0.18% (P < 0.01) and 1.72 ± 0.15%, and the tail moments were 1.88 ± 0.12 AU and 2.87 ± 0.14 AU (P < 0.001) for the free cap and Femto SMILE groups, respectively. FTIR spectroscopy of the Femto smile group revealed disorders in the secondary and tertiary structure of the proteins.
Conclusion: Femto SMILE technique induced more structural changes, DNA fragmentation, DNA damage, and corneal proteins secondary structure alteration than those induced by a microkeratome cutting. These changes may be attributed to the deep penetration of high energy levels to the corneal layer. These findings may highlight the potential impact of the Femto SMILE on the cornea and the necessity for managing the laser parameters used.

Keywords:

Comet Assay, DNA Fragmentation, Femto SMILE, Fourier Transform Infrared Spectroscopy, Histological Analysis

References
1. Chung SH, Mazur E. Surgical applications of femtosecond laser. J Biophotonics 2009;2:557–572.

2. Soong HK, Malta JB. Femtosecond lasers in ophthalmology. Am J Ophthalmol 2009;147:189–197.

3. Vestergaard A, Ivarsen A, Asp S, Hjortdal JØ. Femtosecond (FS) laser vision correction procedure for moderate to high myopia: A prospective study of ReLEx(®) flex and comparison with a retrospective study of FS-laser in situ keratomileusis. Acta Ophthalmol 2013;91:355–362.

4. Yoo SH, Kymionis DG, Koreishi A, Ide T, Goldman D, Karp CL, et al. Femtosecond laser assisted sutureless anterior lamellar keratoplasty. Ophthalmology 2008;115:1303– 1307.

5. Soong HK, Mian S, Abbasi O, Juhasz T. Femtosecond laser assisted posterior lamellar keratoplasty: Initial studies of surgical technique in eye bank eyes. Ophthalmology 2005;112:44–49.

6. Roberts TV, Lawless M, Chan CC, Jacobs M, David Ng, Bali SJ, et al. Femtosecond laser cataract surgery: Technology and clinical practice. Clin Exp Ophthalmol 2013;41:180– 186.

7. Binder PS. Femtosecond applications for anterior segment surgery. Eye Contact Lens 2010;36:282–285.

8. Kymionis GD, Kankariya VP, Plaka AD, Reinstein DZ. Femtosecond laser technology in corneal refractive surgery: A review. J Refract Surg 2012;28:912–920.

9. Abbey A, Ide T, Kymionis GD, Yoo SH. Femtosecond laserassisted astigmatic keratotomy in naturally occurring high astigmatism. Br J Ophthalmol 2009;93:1566–1569.

10. Sekundo W, Kunert K, Russmann C, Gille A, Bissmann W, Stobrawa G, et al. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J Cataract Refract Surg 2008;34:1513–1520.

11. Seyeddain O, Riha W, Hohensinn M, Nix G, Dexl AK, Grabner G. Refractive surgical correction of presbyopia with the Acufocus small aperture corneal inlay: Two-year follow-up. J Refract Surg 2010;26:707–715.

12. Osman IM, Madwar AY. Surface quality of human corneal SMILE lenticules in comparison with microkeratome free caps. Delta J Ophthalmol 2016;17:49–55.

13. Osman IM, Madwar AY. Scanning electron microscopy of human corneal lenticules at variable corneal depths in small incision lenticule extraction cases. Delta J Ophthalmol 2016;17:109–113.

14. Blum M, Kunert K, Schröder M, Sekundo W. Femtosecond lenticule extraction for the correction of myopia: Preliminary 6-month results. Graefes Arch Clin Exp Ophthalmol 2010;248:1019–1027.

15. Hjortdal JØ, Vestergaard AH, Ivarsen A, Ragunathan S, Asp S. Predictors for the outcome of smallincision lenticule extraction for Myopia. J Refract Surg 2012;28:865–871.

16. Kunert KS, Blum M, Duncker GI, Sietmann R, Heichel J. Surface quality of human corneal lenticules after femtosecond laser surgery for myopia comparing different laser parameters. Graefes Arch Clin Exp Ophthalmol 2011;249:1417–1424.

17. De Medeiros FW, Kaur H, Agrawal V, Chaurasia SS, Hammel J, Dupps WJ, et al. Effect of femtosecond laser energy level on corneal stromal cell death and inflammation. J Refract Surg 2009;25:869–874.

18. Mohrenfels CW, Khoramnia R, Maier MM, Pfäffl W, Hölzlwimmer G, Lohmann C. Cut quality of a new femtosecond laser system. Klin Monbl Augenheilkd 2009;226:470–474.

19. Heichel J, Blum M, Duncker GI, Sietmann R, Kunert KS. Surface quality of porcine corneal lenticules after femtosecond lenticule extraction. Ophthalmic Res 2011;46:107–112.

20. Ziebarth NM, Lorenzo MA, Chow J, Cabot F, Spooner GJ, Dishler J, et al. Surface quality of human corneal lenticules after SMILE assessed using environmental scanning electron microscopy. J Refract Surg 2014;30:388–393.

21. Ang M, Tan D, Mehta JS. Small incision lenticule extraction (SMILE) versus laser in-situ keratomileusis (LASIK): Study protocol for a randomized, non-inferiority trial. Trials 2012;13:75.

22. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671–675.

23. Dash HR, Shrivastava P, Das S. Principles and practices of DNA analysis: A laboratory manual for forensic DNA typing. New York, NY, USA: Springer Protocols Handbooks, Springer Nature; 2020.

24. Olive PL, Banáth JP. The comet assay: A method to measure DNA damage in individual cells. Nat Protoc 2006;1:23–29.

25. Gallagher W. FTIR analysis of protein structure. Course Manual Chem 2009;455:1–8.

26. Hayes KD , Ozen BF, Nielsen SS, Mauer LJ. FTIR determination of ligand-induced secondary and tertiary structural changes in bovine plasminogen. J Dairy Res 2003;70:461–466.

27. Compton MM. A biochemical hallmark of apoptosis: Internucleosomal degradation of the genome. Cancer Metastasis Rev 1992;11:105–119.

28. Pu X, Wang Z, Klaunig J E. Alkaline comet assay for assessing DNA damage in individual cells. Curr Protoc Toxicol 2015;65:3.12.1–3.12.11.

29. Choy CK, Benzie IF, Cho P. UV-mediated DNA strand breaks in corneal epithelial cells assessed using the comet assay procedure. Photochem Photobiol 2005;81:493–497.

30. Davidkova M, Juha L, Bittner M, Koptyaev S, Hajkova V, Krasa J, et al. A high-power laser-driven source of subnanosecond soft X-ray pulses for single-shot radiobiology experiments. Radiat Res 2007;168:382–387.

31. Arbillaga L, Azqueta A, Ezpeleta O, Lopez CA. Oxidative DNA damage induced by Ochratoxin A in the HK-2 human kidney cell line: Evidence of the relationship with cytotoxicity. Mutagenesis 2007;22:35–42.

32. Stap J, Krawczyk PM, Van Oven CH, Barendsen GW, Essers J, Kanaar R, et al. Induction of linear tracks of DNA double-strand breaks by alpha-particle irradiation of cells. Nat Methods 2008;5:261–266.

33. Chye SM, Hseu YC, Liang SH, Chen CH, Chen SC. Single strand dna breaks in human lymphocytes exposed to paraphenylenediamine and its derivatives. Bull Environ Contam Toxicol 2008;80:58–62.

34. Mozaffarieh M, Flammer J. Is there more to glaucoma treatment than lowering IOP? Surv Ophthalmol 2007;52:S174–S179.

35. Mozaffarieh M, Schoetzau A, Sauter M, Grieshaber M, Orgül S, Golubnitschaja O. Comet assay analysis of single-stranded DNA breaks in circulating leukocytes of glaucoma patients. Mol Vis 2008;14:1584–1588.

36. Li L, Jiang L, Geng C, Cao J, Zhong L. The role of oxidative stress in acrolein-induced DNA damage in HepG2 cells. Free Radic Res 2008;42:354–361.

37. Dovbeshko GI, Gridina NY, Kruglova EB, Pashchuk OP. FTIR spectroscopy studies of nucleic acid damage. Talanta .246–53:233;2000

38. Shaaban YM, Badran TA. Comparison between the effect of femtosecond laser in situ keratomileusis (FS-LASIK) and femtosecond small incision lenticule extraction (FSSMILE) on the corneal endothelium. Clin Ophthalmol 2020;14:2543–2550.

39. Denoyer A, Landman E, Trinh L, Faure JF, Auclin F, Baudouin C. Dry eye disease after refractive surgery: Comparative outcomes of small incision lenticule extraction versus LASIK. Ophthalmology 2015;122:669– 676.

40. Reinstein DZ, Archer TJ, Randleman JB. A mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J Refract Surg 2013;29:454–460.