Editorial – Optical Coherence Tomography Angiography: Considerations Regarding Diagnostic Parameters

Abstract

This is an Editorial and does not have an abstract. Please download the PDF or view the article HTML.

Keywords:

Not applicable, None, Not required

References
1. Ashraf Khorasani M, Garcia GA, Anvari P, Habibi A, Ghasemizadeh S, Ghasemi Falavarjani K. Retinal and optic disc microvascular changes after acute intraocular pressure elevation in diabetic patients and healthy subjects measured by optical coherence tomography angiography. J Ophthalmic Vis Res 2022;17:_–_.

2. Mirshahi A, Roohipour R, Karkhaneh R, Rajabi MB, Vahedian Z, Bazvand F. Optical coherence tomography angiography findings in malignant hypertensive retinopathy. J Ophthalmic Vis Res 2022;17:_–_.

3. Nagel E, Vilser W. Autoregulative behavior of retinal arteries and veins during changes of perfusion pressure: A clinical study. Graefes Arch Clin Exp Ophthalmol 2004;242:13–17.

4. Joos KM, Kay MD, Pillunat LE, Harris A, Gendron EK, Feuer WJ, et al. Effect of acute intraocular pressure changes on short posterior ciliary artery haemodynamics. Br J Ophthalmol 1999;83:33–38.

5. Schmetterer L, Garhofer G. How can blood flow be measured? Surv Ophthalmol 2007;52:S134–S138.

6. Puchner S, Schmidl D, Ginner L, Augustin M, Leitgeb R, Szegedi S, et al. Changes in retinal blood flow in response to an experimental increase in IOP in healthy participants as assessed with doppler optical coherence tomography. Invest Ophthalmol Vis Sci 2020;61:33.

7. Wei X, Balne PK, Meissner KE, Barathi VA, Schmetterer L, Agrawal R. Assessment of flow dynamics in retinal and choroidal microcirculation. Surv Ophthalmol 2018;63:646–664.

8. Caprioli J, Coleman AL, Blood Flow in Glaucoma Discussion. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 2010;149:704–712.

9. Wen JC, Chen CL, Rezaei KA, Chao JR, Vemulakonda A, Luttrell I, et al. Optic nerve head perfusion before and after intravitreal antivascular growth factor injections using optical coherence tomography-based microangiography. J Glaucoma 2019;28:188–193.

10. Abdolahi F, Zhou X, Ashimatey BS, Chu Z, Jiang X, Wang RK, et al. Optical coherence tomography angiographyderived flux as a measure of physiological changes in retinal capillary blood flow. Transl Vis Sci Technol 2021;10:5.

11. Hormel TT, Jia Y, Jian Y, Hwang TS, Bailey ST, Pennesi ME, et al. Plexus-specific retinal vascular anatomy and pathologies as seen by projection-resolved optical coherence tomographic angiography. Prog Retin Eye Res 2021;80:100878.

12. Brücher VC, Storp JJ, Eter N, Alnawaiseh M. Optical coherence tomography angiography-derived flow density: A review of the influencing factors. Graefes Arch Clin Exp Ophthalmol 2020;258:701–710.

13. Zhang Q, Jonas JB, Wang Q, Chan SY, Xu L, Wei WB, et al. Optical coherence tomography angiography vessel density changes after acute intraocular pressure elevation. Sci Rep 2018;8:6024.

14. Wang X, Chen J, Kong X, Sun X. Immediate changes in peripapillary retinal vasculature after intraocular pressure elevation – An optical coherence tomography angiography study. Curr Eye Res 2020;45:749–756.

15. Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci 2017;58:190–196.

16. Park CK, Lee K, Kim EW, Kim S, Lee SY, Kim CY, et al. Effect of systemic blood pressure on optical coherence tomography angiography in glaucoma patients. Eye 2021;35:1967–1976.

17. Au A, Sarraf D. Vascular anatomy and its relationship to pathology in retinoschisis. Eye 2019;33:693–694.

18. Mäepea O. Pressures in the anterior ciliary arteries, choroidal veins and choriocapillaris. Exp Eye Res 1992;54:731–736.

19. Barash A, Chui TYP, Garcia P, Rosen RB. Acute macular and peripapillary angiographic changes with intravitreal injections. Retina 2020;40:648–656.

20. Cheung CY, Biousse V, Keane PA, Schiffrin EL, Wong TY. Hypertensive eye disease. Nat Rev Dis Primers 2022;8:14.