Development of a Spatio-temporal Contrast Sensitivity Test for Clinical Use


Purpose: We developed a contrast sensitivity test that considers an integrative approach of spatial and temporal frequencies to evaluate the psychophysical channels in processing two-dimensional stimulus for clinical use. Our new procedure provides a more efficient isolation of the magnocellular and parvocellular visual pathways supporting spatiotemporal contrast sensitivity processing.

Methods: We evaluated 36 participants of both sexes aged 18–30 years with 20/20 or better best-corrected visual acuity. Two spatial frequencies (0.5 cycles per degree [cpd] and 10 cpd), being in one of the three temporal frequencies (0.5 cycle per second [cps], 7.5 cps, and 15 cps), were presented in a high-resolution gamma corrected monitor. A two-alternative forced-choice procedure was conducted, and the staircase method was used to calculate the contrast sensitivity. Reliability was assessed using a retest procedure within a month (±5 days) under the same conditions.

Results: Results showed statistical significance in 0.5 cpd and 10 cpd spatial frequencies for 0.5 cps (F = 77.36; p < 0.001), 7.5 cps (F = 778.37; p < 0.001), and 15 cps (F = 827.23; p < 0.001) with a very high (η2 = 0.89) effect size. No statistical differences were found between the first and second sessions for all spatial frequencies. For reliability, a significantly high correlation and high internal consistency were found in all spatiotemporal conditions. The limits were calculated for normality.

Conclusion: We developed an approach to investigate the spatiotemporal integration of contrast sensitivity designed for clinical purposes. The relative contribution of the low spatial frequencies/high temporal frequencies and the high spatial frequencies/low temporal frequencies of the psychophysical channels can also be evaluated separately.


Clinical Psychophysics, Drifting Grating, Dynamic Contrast Sensitivity, Primary Visual Pathway, Spatial Vision

1. Ferris FL 3rd, Kassoff A, Bresnick GH, Bailey I. New visual acuity charts for clinical research. Am J Ophthalmol 1982;94:91–96.

2. Adoh TO, Woodhouse JM. The Cardiff acuity test used for measuring visual acuity development in toddlers. Vision Res 1994;34:555–560.

3. Bach M. The Freiburg Visual Acuity Test – variability unchanged by post-hoc re-analysis. Graef Arch Clin Exp 2007;245:965–971.

4. Bastawrous A, Rono HK, Livingstone IA, Weiss HA, Jordan S, Kuper H, et al. Development and validation of a smartphone-based visual acuity test (Peek Acuity) for clinical practice and community-based fieldwork. JAMA Ophthalmol 2015;133:930–937.

5. Becker R, Teichler G, Graf M. Comparison of visual acuity measured using Landolt-C and ETDRS charts in healthy subjects and patients with various eye diseases. Klin Monatsbl Augenh 2011;228:864–867.

6. Manny RE, Hussein M, Gwiazda J, Marsh-Tootle W. Repeatability of ETDRS visual acuity in children. Invest Ophth Vis Sci 2003;44:3294–3300. 7. Ginsburg AP. A new contrast sensitivity vision test chart. Am J Optom Physiol Opt 1984;61:403–407.

8. Adams RJ, Mercer ME, Courage ML, Vanhofvanduin J. A new technique to measure contrast sensitivity in human infants. Optometry Vision Sci 1992;69:440–446.

9. Alexander KR, McAnany JJ. Determinants of contrast sensitivity for the Tumbling E and Landolt C. Optometry Vision Sci 2010;87:28–36.

10. Alexander KR, Xie W, Derlacki DJ. Visual acuity and contrast sensitivity for individual Sloan letters. Vis Res 1997;37:813–819.

11. Choi AJ, Nivison-Smith L, Phu J, Zangerl B, Khuu SK, Jones BW, et al. Contrast sensitivity isocontours of the central visual field. Sci Rep 2019;9:11603.

12. Dakin SC, Turnbull PR. Similar contrast sensitivity functions measured using psychophysics and optokinetic nystagmus. Sci Rep 2016;6:34514.

13. Atchison DA, Bowman KJ, Vingrys AJ. Quantitative scoring methods for D15 panel tests in the diagnosis of congenital color-vision deficiencies. Optometry Vision Sci 1991;68:41–48.

14. Bailey JE, Neitz M, Tait DM, Neitz J. Evaluation of an updated HRR color vision test. Visual Neurosci 2004;21:431–436. 15. Birch J. Clinical use of the City University Test (2nd Edition). Ophthalmic Physiol Opt 1997;17:466–472.

16. Reffin JP, Astell S, Mollon JD. Trials of a computercontrolled color-vision test that preserves the advantages of pseudoisochromatic plates. In: Drum B, Moreland JD, Serra A, editors. Colour vision deficiencies X. Dordrecht: Springer; 1991. 69–76 p.

17. Armstrong V, Maurer D, Lewis TL. Sensitivity to first- and second-order motion and form in children and adults. Vis Res 2009;49:2774–2781.

18. Borghuis BG, Tadin D, Lankheet MJM, Lappin JS, van de Grind WA. Temporal limits of visual motion processing: psychophysics and neurophysiology. Vision 2019;3:5.

19. Hollants-Gilhuijs MA, Ruijter JM, Spekreijse H. Visual halffield development in children: detection of motion-defined forms. Vis Res 1998;38:651–657.

20. Manny RE, Fern KD. Motion coherence in infants. Vis Res 1990;30:1319–1329.

21. Birch E, Petrig B. FPL and VEP measures of fusion, stereopsis and stereoacuity in normal infants. Vis Res 1996;36:1321–1327.

22. Earle DC. Perception of glass pattern structure with stereopsis. Perception 1985;14:545–552.

23. Langley K, Fleet DJ, Hibbard PB. Stereopsis from contrast envelopes. Vis Res 1999;39:2313–2324.

24. Norman JF, Norman HF, Craft AE, Walton CL, Bartholomew AN, Burton CL, et al. Stereopsis and aging. Vis Res 2008;48:2456–2465.

25. Shea SL, Fox R, Aslin RN, Dumais ST. Assessment of stereopsis in human infants. Invest Ophth Vis Sci 1980;19:1400–1404.

26. Wilcox LM, Harris JM, McKee SP. The role of binocular stereopsis in monoptic depth perception. Vis Res 2007;47:2367–2377.

27. Costa M, Oliveira A, Santana C, Ventura D, Zatz M. Redgreen color vision impairment in Duchenne muscular dystrophy. Neuromuscular Disord 2007;17:815.

28. Costa MF, Cunha G, de Oliveira Marques JP, Castelo- Branco M. Strabismic amblyopia disrupts the hemispheric asymmetry for spatial stimuli in cortical visual processing. Br J Vis Impair 2016;34:141–150.

29. Costa MF, Moreira SM, Hamer RD, Ventura DF. Effects of age and optical blur on real depth stereoacuity. Ophthalmic Physiol Opt 2010;30:660–666.

30. Costa MF, Tomaz S, de Souza JM, Silveira LC, Ventura DF. Electrophysiological evidence for impairment of contrast sensitivity in mercury vapor occupational intoxication. Environ Res 2008;107:132–138.

31. da Costa MF, Paranhos A, Lottenberg CL, Castro LC, Ventura DF. Psychophysical measurements of luminance contrast sensitivity and color discrimination with transparent and blue-light filter intraocular lenses. Ophthalmol Ther 2017;6:301–312.

32. Cormack FK, Tovee M, Ballard C. Contrast sensitivity and visual acuity in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 2000;15:614–620.

33. Croningolomb A, Sugiura R, Corkin S, Growdon JH. Incomplete achromatopsia in Alzheimers disease. Neurobiol Aging 1993;14:471–477.

34. Del Viva MM, Tozzi A, Bargagna S, Cioni G. Motion perception deficit in Down Syndrome. Neuropsychologia 2015;75:214–220.

35. Aaen-Stockdale C, Hess RF. The amblyopic deficit for global motion is spatial scale invariant. Vis Res 2008;48:1965–1971.

36. Acheson JF, Cassidy L, Grunfeld EA, Shallo-Hoffman JA, Bronstein AM. Elevated visual motion detection thresholds in adults with acquired ophthalmoplegia. Br J Ophthalmol 2001;85:1447–1449.

37. Boets B, Wouters J, van Wieringen A, Ghesquiere P. Coherent motion detection in preschool children at family risk for dyslexia. Vis Res 2006;46:527–535.

38. Ezzati A, Khadjevand F, Zandvakili A, Abbassian A. Higherlevel motion detection deficit in Parkinson’s disease. Brain Res 2010;1320:143–151.

39. Ginsburg AP. Contrast sensitivity and functional vision. Int Ophthalmol Clin 2003;43:5–15.

40. Amesbury EC, Schallhorn SC. Contrast sensitivity and limits of vision. Int Ophthalmol Clin 2003;43:31–42.

41. Kaplan E, Shapley RM. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA 1986;83:2755–2757.

42. Keri S, Benedek G. Visual contrast sensitivity alterations in inferred magnocellular pathways and anomalous perceptual experiences in people at high-risk for psychosis. Vis Neurosci 2007;24:183–189.

43. Pelli DG, Bex P. Measuring contrast sensitivity. Vis Res 2013;90:10–14.

44. Alexander KR, Barnes CS, Fishman GA, Pokorny J, Smith VC. Contrast sensitivity deficits in inferred magnocellular and parvocellular pathways in retinitis pigmentosa. Invest Ophthalmol Vis Sci 2004;45:4510–4519.

45. Costa MF. Clinical psychophysical assessment of the ONand OFF-systems of the magnocellular and parvocellular visual pathways. Neurosci Med 2011;2:330–340.

46. Onal S, Yenice O, Cakir S, Temel A. FACT contrast sensitivity as a diagnostic tool in glaucoma: FACT contrast sensitivity in glaucoma. Int Ophthalmol 2008;28:407–412.

47. Smith VC, Sun VCW, Pokorny J. Pulse and steady-pedestal contrast discrimination: effect of spatial parameters. Vis Res 2001;41:2079–2088.

48. Canto-Pereira LHM, Lago M, Costa MF, Rodrigues AR, Saito CA, Silveira LCL, et al. Visual impairment on dentists related to occupational mercury exposure. Environ Toxicol Pharmacol 2005;19:517–522.

49. Feitosa-Santana C, Barboni MT, Oiwa NN, Paramei GV, Simoes AL, da Costa MF, et al. Irreversible color vision losses in patients with chronic mercury vapor intoxication. Vis Neurosci 2008;25:487–491.

50. Ventura DF, Simoes AL, Tomaz S, Costa MF, Lago M, Costa MTV, et al. Colour vision and contrast sensitivity losses of mercury intoxicated industry workers in Brazil. Environ Toxicol Pharmacol 2005;19:523–529.

51. Feitosa-Santana C, Oiwa NN, Paramei GV, Bimler D, Costa MF, Lago M, et al. Color space distortions in patients with type 2 diabetes mellitus. Vis Neurosci 2006;23:663–668.

52. Feitosa-Santana C, Paramei GV, Nishi M, Gualtieri M, Costa MF, Ventura DF. Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test. Ophthalmic Physiol Opt 2010;30:717–723.

53. Moura AL, Teixeira RA, Oiwa NN, Costa MF, Feitosa- Santana C, Callegaro D, et al. Chromatic discrimination losses in multiple sclerosis patients with and without optic neuritis using the Cambridge Colour Test. Vis Neurosci 2008;25:463–468.

54. Gualtieri M, Bandeira M, Hamer RD, Costa MF, Oliveira AG, Moura AL, et al. Psychophysical analysis of contrast processing segregated into magnocellular and parvocellular systems in asymptomatic carriers of 11778 Leber’s hereditary optic neuropathy. Vis Neurosci 2008;25:469–474.

55. Ventura DF, Gualtieri M, Oliveira AG, Costa MF, Quiros P, Sadun F, et al. Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s hereditary optic neuropathy. Invest Ophth Vis Sci 2007;48:2362– 2370.

56. Ventura DF, Quiros P, Carelli V, Salomao SR, Gualtieri M, Oliveira AG, et al. Chromatic and luminance contrast sensitivities in asymptomatic carriers from a large Brazilian pedigree of 11778 Leber hereditary optic neuropathy. Invest Ophth Vis Sci 2005;46:4809–4814.

57. Cohen J. Quantitative methods in psychology. Psychol Bull 1992;112:155–159.

58. Dixon WJ, Massey FJ. Introduction to statistical analysis. 3rd ed. New York, NY: McGraw-Hill; 1969. 59. Aaen-Stockdale C, Ledgeway T, Hess RF. Second-order optic flow deficits in amblyopia. Invest Ophth Vis Sci 2007;48:5532–5538.