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Abstract
The five leading causes of cancer-related deaths are lung (1,760,000 deaths), colorectal
(862,000 deaths), stomach (783,000 deaths), liver (782,000 deaths), and breast
(627,000 deaths) cancers. Epigenetic changes can alter chromatin compaction, leading
to the regulation of gene expression without changing the primary DNA sequence.
Epigenetic mechanisms are normally involved in cellular processes such as genomic
stability, chromosome X inactivation, and embryonic development and differentiation.
Similar to other types of chromatin modifications, DNA methylation has been verified
to affect the expression of various genes. Any impairment in these mechanisms alters
the regulation of gene expression and can contribute to malignant cell transformation.
Over the past few years, extensive innovations within the field of epigenetics have
encouraged its application as a major strategy for the treatment of important diseases
such as cancer.
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1. Epigenetics; a Viewpoint on Gene Expression

Genetic mutations and epigenetic alterations both contribute to tumorigenesis (1). The
term “epigenetics” was initially introduced in 1942 by Canard Wadding via combining
the two words “epigenesist and genetic”. The Greek prefix epi- in “epigenetics” means
”trans”. Epigenetics is defined as hereditary changes in gene function without any
accompanying change in the nucleotide sequence of DNA (2). While the total amount of
DNA within the genome remains constant throughout cell differentiation and specializa-
tion, DNA expression profiles vary widely among different cell types and during various
growth stages (1, 3). The main cause of alterations in developmental gene expression
is epigenetic changes that are stably inheritable despite the fact that they do not alter
nucleotide sequences (4). These epigenetic modifications include:
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1. DNA methylation

2. Histone modifications

(a) Histone chemical changes

• Acetylation and deacetylation
• Methylation and demethylation
• Phosphorylation, ubiquitylation, and sumoylation

(b) Nucleosome replacement

3. Regulatory microRNA (miRNA) (1, 5)

Figure 1: Hereditary of gene silencing is regulated by mechanisms that include DNA methylation, histone
modification, and nucleosome displacement. DNA methyltransferase (DNMT), histone deacetylase (HDAC),
histone methyltransferases (HMTs), and nucleosomal alteration factors (NURFs) are involved in DNA
modifications and epigenetic regulation. Collectively, they trigger an inhibitory effect that results in gene
silencing. The expression of certain genes can be physiologically omitted at a given time to facilitate the
development and evolution of organisms; however, certain diseases such as cancer may occur as a result
of pathological gene silencing.

2. DNA Methylation

In mammals, DNA methylation occurs mainly at the C5 of cytosine (C) bases located in
CpG dinucleotides. These specific dinucleotides are mainly concentrated in the regu-
latory regions of most genes and are known as CpG islands (6). Hypermethylation of
the regulatory region typically suppresses the expression of tumor suppressor genes in
neoplastic cells (7, 8, 10). 5-methylcytosine is considered to be a hot spot and target for
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exogenous and endogenous mutagens in different tumors (9). Several gene families
involved in DNA repair, hormone receptor function, and angiogenesis inhibition are
silenced as a result of DNA methylation. DNA methylation can alter gene expression
via selective attachment of regulatory transcriptional proteins that are different from
those bind to the non-methylated DNA. Hypermethylation-derived gene silencing that
drives carcinogenesis can also provide a major target for the prevention and treatment
of cancer (12). It has been demonstrated that epigenetic modifications such as DNA
methylation and histone modifications contribute to long-term gene silencing and car-
cinogenesis (13). For example, alterations in themethylation pattern of genes, particularly
those involved in signaling pathways, are significantly correlated with the incidence of
gastric cancer (14-17). The methylation of CpG dinucleotides in DNA plays an impor-
tant role in the stability of chromosome structure and gene expression. Typically, DNA
methylation within promoter regions prevents the attachment and activation of tran-
scription complexes and causes gene silencing (18-22). Additionally, DNA methylation
can trigger binding of other chromatin modifying proteins such as HDACs and histone-
methyl transferases (HMTs), and this in turn results in the occurrence of further epigenetic
modifications to the chromatin (23-25). Previous research indicates that the expression
of certain genes such as P16, hmlh1, and timp3 are deeply suppressed in gastric car-
cinogenesis as a result of hypermethylation (26-28). Generally, the inactivation of these
genes can result from genetic or epigenetic changes to both alleles. Hmlh1 and P16
genes are often deactivated by epigenetic modifications in sporadic gastric adenocarci-
noma (29, 30). DAP kinase (Death Associated Protein Kinase), a serine-threonine kinase
that induces apoptosis, has been observed to be inactivated due to methylation of CpG
sites in breast, bladder, kidney and lung cancers and also malignant lymphocyte B cells
(31-33). The expression of the THBS1 gene, an angiogenesis inhibitor, is decreased
indifferent types of human tumors (34). Hypermethylation of the THBS1 promoter has
been observed in several cancer cell lines and also in brain tumors (35). It was reported
that hypermethylation and silencing of RUNX3 translational factors is associated with
a number of cancers, particularly gastric cancer. The monitoring of RUNX3 expression
may be useful for assessing the occurrence of cancers (36). RASSF1A is another tumor
suppressor factor that is silenced in gastric tumors and other malignancies via hyperme-
thylation of the regulatory regions (14).
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3. Histone Modifications and Alteration of
Gene Expression

Chromatin is a combination of DNA and proteins that organize and stabilize the structure
of DNA, the basic heredity material, and chromatin structure regulates the transcriptional
pattern. The main subunit of chromatin, specifically the nucleosome, is a histoneoc-
tamer that consists of four central histones (H2A, H2B, H3, and H4) that are arranged
as two distinct dimers (H2A/H2B and H3/H4) encompassed by a 146bp of DNA (41, 42).
Histone modifications influence the ability of DNA to bind to other proteins that affect
chromatin compaction. The structure and organization of chromatin are two important
factors that regulate gene expression. Both the location and the components of the
nucleosome within a given promoter region control transcription levels, and these fac-
tors are regulated by intracellular and extracellular signals (37). The chromatin structure
is largely influenced by the N-terminal region of histone proteins. Histone modifications
such as methylation, phosphorylation, acetylation, ubiquitination, ADP ribosylation, pro-
line deamination, and isomerization are considered to be the most important epigenetic
modifications. These alterations generally occur at the N-terminal regions of histone
proteins, and these modifications play a significant role in gene expression alterations
(38, 39). While histone acetylation weakens the association of histone proteins with DNA
and positively affects transcription rate, histone methylation can either activate or deac-
tivate gene transcription based on the specific amino acid residue that is methylated.
For example, methylation of histone H3 lysine 4, 36, and 79 is associated with active
transcription, while addition of a methyl group to histone H4 lysine 9 and 27 negatively
affects gene transcription. The methyl transfer reaction is catalyzed by histone methyl
transferase (HMTs) enzymes that act specifically for different substrates (40). Methylation
of H3 Lysine 9 within the GKN1 promoter, a process involved in accurate function of the
gastric mucosa, is an example of the role of epigenetic modifications in the induction
of cancer cells (41). Although histone methylation was recognized as a distinct process
regulating epigenetic modifications and it was believed that methylation independently
regulates the structure of chromatin and gene expression (42-45), phosphorylation of
H3 serine 10 is also defined as another type of epigenetic alteration that controls the
structure of chromatin by preventing methylation of lysine (46). Poly-ADP ribosylation of
histone proteins alters chromatin structure in two ways. First, short chains of ADP poly-
mers are covalently added to histone proteins. Second, branched and long chain poly-
mers in the PARP1 chain are attached to histones (47, 48). These histone modifications
play an important role in the epigenetic regulation of corresponding genes. Acetylation
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and methylation are two important histone changes that can involve in tumorigenesis
through epigenetic mechanisms. Acetyl and methyl residues are well-known as epige-
netic markers in cancer studies (49, 50).

4. Histone Acetylation and Cancer

Histone acetylation was first hypothesized by Vincent Allfrey, who suggested that
acetylation is associated with gene transcription in eukaryotic cells (57). It is now
established that histone acetylation is more specific than other histone modifications. In
most cases, this epigenetic alteration occurs on the amine groups of the lysine residue.
Transfer of the acetyl groups is mediated by histone acetyltransferase (HATs) and
histone-deacetylase (HDACs) enzymes. The steady-state level of histone acetylation
is achieved by the balanced activity of HAT and HDAC. Generally, increased levels of
histone acetylation (hyperacetylation) would neutralize positive charge of histone tails
and cause a reduction in DNA-histone binding affinity (52-55). Disruption of acetylation
homeostas is an important factor that regulates gene expression and can be associated
with carcinogenesis (56). It appears that the acetylation of histones H3 and H4 is
particularly important in the context of chromatin structure, translation, and expression
(57).

The three main families of the HAT are described below.

1. MOZ / YBF2 / SAS2 / TIP60 / Myth

2. GCN5-N-acetyl transferase (GNAT)

3. CBP / P300 family.

HATs transfer an acetyl group into the lysine residues of the histone proteins (58, 59).
The role of HAT enzymes in gene transcription, mutation and expression have been
observed in various types of cancers. An imbalance between acetylation and deacety-
lation levels has been observed in many tumors. A decrease in histone acetylation is
associated with reduced potential of tumor progression and metastasis. Trichostatin A
(TSA) is a kind of histone deacetylation inhibitor that inhibits cancer cells invasion and
induces apoptosis by increasing histone acetylation, particularly within gene promoter
regions. The use of TSA as a cancer therapeutic has recently been explored. Gene
expression can be altered in metastatic tumors by histone deacetylation, and therefore,
histone acetylation may provide a target for cancer treatment in metastatic stages or at
early stages (60). Histone acetyltransferases co-regulate gene expression by binding to
transcription factors. Additionally, the acetylation of non-histone proteins such as PCAF,
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P300 and CBP by histone acetyltransferases can result in oncogenic transformation (58,
61, 62). Roles for histone acetyltransferases have been reported in both liver and solid
cancers. It was observed that P300 mutation is associated with solid tumor formation in
the intestine, stomach, chest, and pancreas (62, 63). Tip60 histone acetyltransferase is
involved in tumorigenesis pathways via the induction of transcriptional changes in P53

and Myc genes (64). Specifically, the acetylation pattern of the P53 gene promoter is
altered by Tip60 and this results in release of cells from the G0 stage and subsequent
apoptosis (65, 66). Decreasing the expression of Tip60 reduces P53 acetylation and
apoptotic signaling, and this decrease in expression increases the malignant potential
of tumor cells. Due to the role of Tip60 in tumor suppression, even the rare loss of a
single alleleis correlated with malignancies such as lymphoma, ovarian, and head and
neck tumors (64).

Figure 2: DNAmethylation. The enzymeDNAmethyltransferase (DNMT) catalyzes transfer of amethyl group
to the 5C of cytosine to form 5-methylcytosine. S-adenosylmethionine (SAM) is critical for this reaction and
acts as a DNA methyltransferase (DNMT) cofactor and a methyl-donor for DNA methylation. During the
course of this reaction, SAM is converted to S-adenosyl homocysteine (SAH). DNA methylation changes
the affinity of transcription factors to their cognate consensus sequence on the promoter of corresponding
genes, ultimately leading to gene expression alterations.
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5. Histone acetylation

The main action of HDACs is opposite that of histone acetyltransferases. These oppos-
ing roles of HATs and HDACs regulate the homeostasis of histone acetylation. HDACs
act to remove the acetyl groups from lysine residues in non-histone proteins (67).

There are three classes of histone deacetylases:

• Class I contains histone deacetylase 1, 2, 3 and 8 (in the nucleus)

• Class II contains histone deacetylase 4, 5, 6, 7, 9, and 10 (in the nucleus and
cytoplasm)

• Class III contains serotonin (SIRT 1-7)

• Class IV contains Histone deacetylase 11 (HDAC 11 plays the role of both Class I
and II) (68).

Classes I, II, and IV possess similar sequences and structures, and they require Zn2+ for
enzymatic activity. However, the third family (serotonin) shows no structural similarity
to the others, and this enzyme requires NAD+ (nicotinamide adenine dinucleotide) for
catalytic function. Class I are nuclear proteins that regulate histone acetylation and alter
chromatin structure (67); however, the actions of all members deeply affect cellular func-
tion (69). According to Satoshi et al., loss of HDAC1 and HDAC2 activity in tumor cells
inhibits a particular type of bowel cancer, while loss of HDAC3 has no effect in this
context (70). In contrast, it was reported that HDAC3 inactivation can efficiently suppress
the growth of intestinal cancer cells (71). Additionally, HDAC3 and HDAC2 inactivation
may increase DNA damage and apoptosis (72). Class II and IV histone deacetylases are
present in the cytoplasm and usually acetylate non-histone proteins (67). A number of
researches have shown the role of HDAC inhibitors in chromatin remodeling and apop-
tosis (73, 74). There is evidence that alteration in acetylation patterns of non-histone pro-
teins such as HSP90 that are modulated by HDAC6 can affect tumor growth. Conversely,
inhibition of HDAC6 activity can stimulate anti-tumor activity (67, 75). Interestingly, deac-
tivation of class II histone deacetylases results in a specific functional outcome. Loss
of HDAC4 activity inhibits the proliferation of tumor cells and stimulate sapoptosis (76).
Additionally, although loss of HDAC7 activity in endothelial cells does not affect cell
growth, this loss does inhibit cell migration and results in modification of cell structure
(77). Another role of class II of histone deacetylases is to regulate angiogenesis through
the function of HDAC6 and HDAC10. Inhibition of HDAC6 and HDAC10 may reduce
transcription of vascular epithelial growth factor receptors (VEGFR1 and VEGFR2) (78).
Generally, HDAC 1 functions mainly in cellular invasion while HDACII acts in the context
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of cellular migration, angiogenesis, and cell morphology (79, 80). Changes of the tran-
scriptional level of HDACs within tumor tissues have also been reported. For example,
HDAC 1 has a higher level of expression in prostate, stomach, and intestinal tumors
when compared to expression levels in their normal counter parts (71, 81-83). HDAC2
gene expression has been reported in intestinal (84), head and neck (70), and gastric
(85) cancers; however, increased levels of HDAC6 expression have been reported in
breast cancer (86). Changes in the expression of histone-deacetylase enzymes can alter
the level of deacetylation in various genes. For example, methylation of the DAP kinase
gene, which encodes an apoptosis regulatory protein, and deacetylation of histones H3
and H4 in the promoter region cause silencing of corresponding genes in tumors of the
stomach and the intestine (55, 87).

Figure 3: Interplay between histone acetylation and deacetylation. Acetylation of histone tails is catalyzed by
histone acetyltransferases (HAT) that relax chromatin structure. In contrast, histone deacetylation mediated
by histone deacetylases (HDAC) induces chromatin compaction and gene suppression. Disruption of the
balance between acetylation/deacetylation of histone proteins leads to gene expression alterations that
may be associated with carcinogenesis.
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6. Histone Methylation

Lysine residues of histone proteins can be mono, di, or tri-methylated. Binding of a
methyl group creates a new level of complexity in the structure of histone protein. Previ-
ous studies indicated that these methylation patterns function directly to either activate
or inactivate translation (88). Methylation on lysines 4 and 27 in histone H3 has been
more widely studied than others. Results showed that it is catalyzed by multisubunit
complexes. The KMT2A (K-pecific methyltransferase 2A), also known as MLL, methy-
lates lysine 4 through the action of its regulatory domain (89), and the PRC2 (Polycomb
repressive complex) methylates lysine 27 (90). Although the consequences of H3 lysines
4 and 27 methylation in regard to activation or inactivation of gene transcription have
not been established, it has been demonstrated that these modifications can restore the
chromatin structure of BAF (91). Followingmethylation of H3 lysine 27, the PRC2 complex
detects tri-methyl lysine by a chromodomain containing CBX1, which ultimately serves to
increase chromatin compaction and transcription suppression (92-94). As lysine methy-
lation of histone proteins is important for gene expression, the removal of methyl groups
is precisely controlled by several lysine demethylase (KDMs) enzymes, including KDM1
(LSD1), KDM6B ( JARID1), KDM6A (utx) and KDM6B (JMJD3) (88). The accurate balance
between methylation and demethylation of histone proteins is important for precise
regulation of gene transcription. Arginine residues are also a target for methylation
changes that affect the level of gene expression (95). Arginine methylation acts in two
ways to control gene expression. Specifically, methylation of arginine residues that exist
in proximity to lysine residues can prevent lysine methylation (96). For example, methy-
lation of arginine 2 inhibits methylation of lysine 3 (97). Methyl arginine can also provide
a suitable target for the attachment of methylate-arginine-binding proteins that alter the
function of transcriptional regulatory proteins (98).

7. Phosphorylation, Ubiquitylation, and Sumoylation

Histone phosphorylation is a dynamic reaction that is targeted to N-terminal serine,
threonine, and tyrosine amino acid residues (99). In all creatures from yeast to human,
serine 10 of histone H3 (H3S10) is the target amino acid for phosphorylation (100). Hyper
phosphorylation of histone H3 has been described in gastric cancer to be associated
with invasion, angiogenesis, andmetastasis of lymph nodes (101). Levels of histone phos-
phorylation are regulated by kinase and phosphatase enzymes (102). All known histone
kinases catalyze the transfer of phosphate group from ATP to the free OH group of
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the recipient amino acid. This reaction increases negative charge in the histone protein
that affects chromatin structure. The mechanism by which kinase enzymes bind to DNA
remains poorly understood (103). Phosphorylation, sumoylation, and ubiquitylation can
lead to the activation or inactivation of target genes, and this is dependent up on the
site of the reaction. For example, ubiquitylation of H2A lysine 119 is associated with
suppression of gene transcription, whereas ubiquitylation of H2B lysine 123 can activate
gene transcription (94). Ubiquitylation of H2B lysine 123 participates in gene activation
by Ubp8 and Ubp10 proteases (104). Sumoylation, the only histone modification that
occurs post-transcription, is defined as an inhibitory mechanismin yeast (105).

8. microRNA

A group of 22-nucleotide miRNA fragments can inhibit the expression of target mRNA,
can prevent translation, and in some cases function to degrade complementary mRNA.
Evidence suggests that the regulation of miRNA expression occurs through inappro-
priate methylation of the regulatory region. For example, methylation of the miR-137
promoter reduces the expression of tumor suppressor genes in stomach cancer, and
this has also been reported for other miRNAs such as miR-335, miR-495, miR-9, miR-
10b, miR-219-2-3P, miR-212, miR-941, and miR-1247 (191). There are also micro-RNAs that
possess dual functions in gastric cancer, and these can act as oncogenes (miR-19a) and
tumor suppressors (miR-874) (192).

9. Epigenetics Provides a New Approach for
Cancer Treatment

Various epimutations such as abnormal methylation have been observed in various can-
cer cells. These epimutations can be considered as biomarkers for the classification of
tumors. One of the most important epimutation alterations is hypermethylation that sup-
presses the expression of tumor suppressor genes, a process that can ultimately result
in tumorigenesis (7, 8, 193). Scientists believe that DNA methyltransferase inhibitors can
effectively return cells to normal conditions. These inhibitors are considered as potential
drug candidates, as some of them have shown promise in in vitro pharmacogenetic anal-
yses in mice (193, 194, 195). Similar to methyltransferase inhibitors, histone deacetylase
inhibitors may also prove effective in the epigenetic treatment of cancer. Collectively,
there are two categories of epigenetic drugs:

1. DNA methylation inhibitors:
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Table 1: Various types of epigenetic alterations that occurduring gastric carcinogenesis.

Modification Frequency Cellular process Target genes References

DNA
hypermethylation

Decrease Signaling pathway ADAMTS9, BCL68, BNIP3,
DAPK, DKK1, FBLN1, GATA4,
LMX1A, OPCML, RELN,
SFRP protein, SOCS1,
SOX17, TIMP3,VEZT,
hDAB2IP, RASSF1A, RKIP,
SOCS-1, APC, Dkk-3, CRBP1,
RAR B, BINP3, PRDM5,
TCF4, HAI-2/SPINT2,
CXCL12, HOXD10, HOXA1,
HoxD10, DLL1, NDRG2,
SHP1, CACNA1G, CMTM3,
PCDH10, GSTP1, PCDH10,
RBP1, SFRP2, GPX3, DAPK,
P16

(8, 106-157)

Transcription
regulation

ZNF545, CDH5,
HLTF,RUNX3

(79, 80, 108, 126,
143, 145, 158)

DNA repair hMLH1, MGMT (130, 143, 147,
159-162)

Attachment,
invasion and cell
migration

CDH1, FLNc, GRIK2,
HOXA10, LOX, TIMP3, TSP1

(125, 126, 130, 142,
143, 145, 147, 157,
163-165)

Chromatin-
modifying
enzyme

(DNMT1, DNMT3A, DNMT3B,
UHRF1)

(166, 167)

microRNA coding Let-7f, MIR10B, MIR34C,
MIR137, MIR155, MIR182,
MIR195, MIR200B,
MIR200C, MIR210, MIR212,
MIR338, MIR375, MIR378,
MIR429, MIR449

(168-179)

DNA
hypomethylation

Increase Signaling pathway ALDH2, ASCL2, MTHFR,
SULF1, SULF2, TERF2,
CDKN1C

(126, 180-184)

Increase MicroRNA gene (MIR93) -185

H3/H4
Hyperacetylation

Increase Cell cycle control MYC -113

H3/H4
deacetylation

Decrease Chromatin-
modifying
enzyme

GATA, RND3 (186, 187)

H3
dephosphorylation

Decrease Cell cycle control c-JUN, HSP70 -188

Micro RNAs Decrease DNA repair MGMT, SMARCA5 (189, 190)

(a) 5-azacitidine (vidaza)

(b) Decitabine (2-deoxy-5-azacitidine)

2. Histone deacetylase inhibitors:

(a) Suberanilohydroxamic acid (SAHA, Zolina)

(b) Romidepsin (Istodox) (196)
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Azacididine and Decitabine have both proven to be beneficial in the treatment of
myelodysplastic syndrome (197, 198) and myeloid leukemia. Both medication strategies
are effective when ordered at low doses (199). Over the past few years, various drugs
have been discovered for cancer treatment; however, most of these lack specificity. Non-
specific effects of anticancer drugs are likely due to their mechanism of action or their
wide range of target substrates. Given the significant role of epigenetic modifications in
the context of cancer incidence, anticancer drugs should function to preserve the normal
epigenetic state.

10. Conclusions and Future Direction

The epigenomic profile of a cell is dependent upon the status of DNA methylation, his-
tone proteins modifications, and non-coding RNAs working individually or in a network
to support either transcriptional activation or suppression of genes. In diseases such
as cancer, aberrant epigenetic modifications may activate or suppress transcription of
oncogenes or tumor suppressor genes, respectively. The main advantage of epigenetic
therapies is that, despite genetic abnormalities, epigenetic alterations are reversible.
The goal of epigenetic therapies is to reverse neoplastic growth of tumor cells to a more
normal state. Additionally, epigenetic differences between individuals provide opportu-
nities to create personalized medications.
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