MicroRNA-based Novel Strategies for Cancer Treatment

Hossein Javdani and Negin Parsamanesh

Molecular Medicine Department, Birjand Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran

Abstract

MicroRNAs (mirNAs) have garnered tremendous interest in cancer biology research in the recent decade. mirNAs are a group of short non-coding RNAs, 20–24 nucleotides in length, that are found in animals and plants. They can reduce the expression of genes involved in numerous vital cell processes. Recent evidences indicate a key role played by mirNAs in the initiation and development of human carcinogenesis. These function including: the regulation of oncogenes, tumor suppressor genes, and several tumor-associated genes to that of processes such as cell proliferation, apoptosis, and angiogenesis. Clinical trials aimed at improving mirNA profiling for clinical diagnosis and prognosis of different disorders are now underway. In this review, we have summarized the physiological role of mirNAs and their diagnostic and therapeutic potential in clinical assessment.

Keywords: biogenesis, cancer, microRNAs, regulation, therapeutic

1. Introduction

MicroRNAs (mirNAs) are a subset of small (18 to 24 nucleotides) non-coding RNA molecules, which were discovered in 1993 in the nematode C. elegans in relation with the gene lin-14 (1-3). MicroRNAs play vital roles in several biological pathways in multicellular organisms, including mammals (4). They are involved in different cellular processes like proliferation, differentiation, metabolism, cell cycle, and apoptosis of normal cells, as well as in the pathogenesis, invasion, and tumorigenesis of various malignancies (5-7). About 3,000 potential human microRNAs have been identified (8). They directly bind with the 3’UTR region of target messenger RNAs (mRNAs) and downregulate gene translation. Bioinformatic analyses have revealed that mirNAs can regulate approximately 60% protein-encoding genes in the human genome (9). Recent evidences highlight the importance of noncoding RNA as global regulators in the development and progression of cancer through their specific mRNA interactions. In addition, mirNAs can target multiple effectors of cell proliferation, differentiation, and survival pathways (10). Hence, it is important to find the precise function of mirNAs in carcinogenesis and investigate
Research in Molecular Medicine (RMM) Hossein Javdani and Negin Parsamanesh

the basis of their actions. Therapeutic targeting of miRNAs in cancer could open a new avenue for the use of miRNAs in cancer therapy (11). In current review, we summarize the identification and characterization of miRNAs and also discuss their roles in human cancers and tumorigenesis. The various types of RNA molecules are shown in Figure 1.

Figure 1: Type of RNA molecules. RNA have two subclass including; mRNA and ncRNA.

2. MicroRNA Biogenesis and Its Regulation

The biogenesis of miRNAs involves an initial transcription of a large primary transcript (pri-miRNA) by RNA pol II which in the 5’ to 3’ direction’ (12, 13). In the nucleus, the pri-miRNA is capped, polyadenylated, and then cleaved by the RNA-binding protein DGCR8/Pasha and RNase type III (Drosha) into a ~60–75 nucleotides-long structure identified as a precursor miRNA (pre-miRNA) (14, 15). The Ran/GTP/Exportin-5 complex is known to act as a transporter of pre-miRNAs. Subsequently, Dicer (RNase III enzyme) cleaves the double stranded mature RNA duplex into a ~19–24 nucleotides-long structure (16), which is incorporated into the RNA-induced silencing complexes (RISCs) and guides the translation of mature miRNA (according to Figure 2) (17). The ‘seed’ sequence in the mature miRNA recognizes and binds to its complementary 3’ untranslated region (UTR) on the target mRNA, forming RISC which subsequently cleaves the target mRNA. Some evidences also suggest that the 5’ end of the mature miRNA or open reading
frame of the aim mRNA are involved in the recognition process across the genome (Figure 1) (18-20). Reports estimate that about 30% of the human genome is controlled by miRNAs and this makes miRNAs one of the biggest groups of target specific regulatory molecules in the body (21).

![Figure 2: MicroRNA biogenesis and regulation. The pri-miRNA is capped, polyadenylated, and then cleaved in the nucleus and identified as a precursor miRNA (pre-miRNA). Then, Dicer (RNase III enzyme) cleaves the double stranded mature RNA duplex by RISCs and guides the translation of mature miRNA.](image)

3. A Potential Role for MicroRNA Expression in Cancer

Most types of cancers have characteristics including the lack of cellular identity, enhancement of proliferation ability, and loss of the cell death regulatory system (22-24). Studies carried out in different organisms have indicated that miRNAs are involved in several of these cellular processes, suggesting that they play a critical role in carcinogenesis. Several reports have firmly established that miRNAs are expressed in cancer tissues and normal. Further, that they are located in tumor-associated genomic sites or in fragile regions (22). Amplification, deletion, and translocation of miRNA genes in tumor cells may lead to miRNA copy number variation (25). Research has demonstrated an absence of the mir-16 and mir-15a genes in the 13q14 chromosomal region of B-cell chronic lymphocytic leukemia (B-CLL) patients (26). In lung cancer, the genes mir-143 and mir-145 in the 5q33
region are mostly omitted leading to reduced miRNA expression (27). However, miR-17–92 gene amplification was found in lung tumor and B-cell lymphomas (BCL). In addition, over expression of this gene cluster was also observed in T-cell acute lymphoblastic leukemia (T-ALL) (28). Aberrant expression of several transcription factors (TFs) can be the key cause of miRNA dysregulation in tumor cells such as p53 and c-Myc (29). O’Donnell and colleagues in 2008 showed that c-Myc is overexpressed in several neoplasms to control cell apoptosis and proliferation, elevate expression of oncogenic miR-17–92, and induce binding of E-box elements. Furthermore, c-Myc up regulated the activity of the TF regulated miRNAs involved in cancer suppression including let-7, miR-15a, miR-26 and miR-30 (30). Recent evidences have shown that miRNAs combined with chemotherapeutic agents can be used a new strategy for next-generation malignancy treatment (31-33).

In breast cancer, similar to lung cancer, the down regulation of let-7a was linked with poor prognosis and invasion (34). In addition, miR-21, miR-25, and miR-221 have been identified to be associated with solid cancer such as papillary thyroid carcinoma (PTC). Volinia et al. in 2006 carried out a genome-wide miRNome study that included stomach, colon, prostate, and breast cancers and found that solid tumors over expressed miRNAs such as iR-17–5p, miR-21, miR-20a, miR-92, miR-106a, and miR-155. Some evidences indicated that miR-20 and miR-106 can target the transforming growth factor b receptor II and retinoblastoma genes, respectively (34). On the other hand, there are significant differences in miRNA expression between normal and CLL B cells (35). Karube et al. in 2005 showed that low mRNA expression of Drosha and Dicer was associated with lung cancer with a remarkable prognostic potential on the survival of surgically treated cases and was implicated in reduction of genomic instability and transformation inhibition (36, 37). Argonaute genes such as AGO3, AGO1, and AGO4 are located in 1p34–35 and were found to be mutated in Wilms tumors and correlated with neuroectodermal tumors (38). Further research indicated that miRNA inhibition could be essential in designing drugs for disorders such as tumors.

4. miRNA Approach in Cancer Diagnosis and Treatment

Various studies have demonstrated the significant roles played by miRNAs in tumorigenesis and have explored their possible use as therapeutic biomarkers and their impact on the prognosis of human cancer (39). miRNAs can directly target cancer cells and aid in the treatment of other disorders (40). An RT-qPCR study revealed that miRNAs can be used to distinguish ErbB2(HER2)-positive from ErbB2(HER2)-negative and HER2-positive from HER2-negative breast tumors in biopsies (41). Overexpression of some miRNAs can decrease the expression levels of tumor suppressors or additional genes.
involved in cell differentiation and, therefore, lead to tumor development by stimulating angiogenesis, proliferation, and metastasis, i.e., these *mirNAs* function as onco-genes (42). Most researchers are focusing on non-invasive and inexpensive methods for diagnosis including assessment of plasma, serum, saliva, and urine for detection of *mirNA* levels. Welch and colleagues in 2007 indicated that *mir*-34a is involved in neuroblastoma cell tumorigenesis as a potential tumor suppressor (43). Cochetti et al. in 2016 demonstrated that let-7i, *mir*-195, and *mir*-26a were elevated in the serum of patients with prostate tumor compared to those with benign prostate hyperplasia (Table 1 shows microRNA abnormality in tumorigenesis) (44). In addition, circulating *mir*-141 and *mir*-375 levels were found to be associated with metastatic prostate cancer and could be used as a prognostic biomarker. Bianchi et al showed that *mir*-28, *mir*-30, *mir*-92, *mir*-140, and *mir*-451 have uncontrolled expression in lung cancer (45). Moreover, *mir*-27, *mir*-158, and *mir*-200 were associated with metastatic colon cancer (46).

4.1. Genetic variation

Since 2004, different evidences have demonstrated that about half of the *mirNAs* are found in fragile sites and tumor susceptibility regions (47). Different studies involving mapping repetitive sequences, breakpoints and CpG islands have been performed to confirm the association of *mirNA* genes with fragile sites (48). In addition, certain mutations that result in changes in *mirNA* sequences might be involved in down-regulation of cancer suppressor genes and lead to oncogenesis. Thus, several genetic polymorphisms influence *mirNA* molecular pathways and processing of *mirNA* precursors (49).

4.2. Epigenetic alteration

Aberrant epigenetic processes a well-known feature of malignant cells and possibly happens in primary stage of cell cycles. Epigenetic alterations leading to DNA methylation and histone modification have been noted in particular cancers (49). Most studies have utilized chromatin remodeling therapy to address epigenetic change of microRNAs (50).

5. Conclusion

Diagnostic, predictive and therapeutic potentials of *mirNAs* have been significantly determined by various research studies. Numerous evidences suggest that *mirNAs* can act as tumor suppressive or oncogenes and can be incorporated into novel cancer therapies. Performing comprehensive and well-designed, retrospective and prospective
TABLE 1: MicroRNA abnormalities associated with tumorigenesis.

<table>
<thead>
<tr>
<th>MicroRNA</th>
<th>Chromosomal location</th>
<th>cancer</th>
<th>Function</th>
<th>Expression</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let-7</td>
<td>11q24</td>
<td>colon, Lung, breast, ovarian cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(51)</td>
</tr>
<tr>
<td>mir-15/-16</td>
<td>13q31</td>
<td>CLL and prostate cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(52)</td>
</tr>
<tr>
<td>mir-26a</td>
<td>3p22</td>
<td>liver cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(53)</td>
</tr>
<tr>
<td>mir-29</td>
<td>7q32</td>
<td>AML, CLL, lung and breast cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(54)</td>
</tr>
<tr>
<td>mir-31</td>
<td>9p21.3</td>
<td>Breast, stomach, ovarian cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(55)</td>
</tr>
<tr>
<td>mir-34</td>
<td>mir-34</td>
<td>Colon, ovarian, glioblastoma cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(56)</td>
</tr>
<tr>
<td>mir-96</td>
<td>7q32.2</td>
<td>Pancreatic cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(57)</td>
</tr>
<tr>
<td>mir-107</td>
<td>10q23.31</td>
<td>Colon and pancreatic cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(42)</td>
</tr>
<tr>
<td>mir-126</td>
<td>9q34.3</td>
<td>Stomach and breast cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(58)</td>
</tr>
<tr>
<td>mir-181c</td>
<td>19p13.12</td>
<td>Stomach cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(59)</td>
</tr>
<tr>
<td>mir-196</td>
<td>17q21.32</td>
<td>Pancreatic cancer</td>
<td>Tumor-suppressor</td>
<td>Down</td>
<td>(60)</td>
</tr>
<tr>
<td>mir-10b</td>
<td>2q31.1</td>
<td>Breast, esophagus and glioblastoma cancer</td>
<td>Oncogene</td>
<td>up</td>
<td>(61)</td>
</tr>
<tr>
<td>mir-1792</td>
<td>13q22</td>
<td>Lung, colon, breast cancer</td>
<td>Oncogene</td>
<td>up</td>
<td>(34)</td>
</tr>
<tr>
<td>mir-21</td>
<td>17q23.1</td>
<td>Lung, esophagus colon, liver, pancreatic, breast and glioblastoma cancer</td>
<td>Oncogene</td>
<td>up</td>
<td>(62)</td>
</tr>
<tr>
<td>mir-155</td>
<td>21q21</td>
<td>CLL, AML, breast, lung, colon cancer</td>
<td>Oncogene</td>
<td>up</td>
<td>(34, 63)</td>
</tr>
<tr>
<td>mir-181b</td>
<td>1q32.1</td>
<td>Liver cancer and myeloma</td>
<td>Oncogene</td>
<td>up</td>
<td>(64)</td>
</tr>
<tr>
<td>mir-196</td>
<td>17q21.32</td>
<td>Esophagus, glioblastoma and colon</td>
<td>Oncogene</td>
<td>up</td>
<td>(65)</td>
</tr>
<tr>
<td>mir-200a/b</td>
<td>1p36.33</td>
<td>Ovarian cancer</td>
<td>Oncogene</td>
<td>up</td>
<td>(66)</td>
</tr>
<tr>
<td>mir-221/-222</td>
<td>Xp11</td>
<td>lung cancer, hepatocellular carcinoma</td>
<td>Oncogene</td>
<td>up</td>
<td>(67)</td>
</tr>
</tbody>
</table>

studie swill enable better characterization of the potentials of mirNAs. Furthermore, studies on least invasive procedures comprising blood, saliva and urine collection will help in the expansion of cost-effective and reliable miRNA-based technology for early cancer detection.

Acknowledgments

The authors are acknowledgment of the molecular medicine department of Birjand University of Medical Science.
Conflicts of Interest

None

References


