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Abstract
Background: Acrylamide (AA) is a reactive molecule produced during food processing
at temperatures above 120°C.
Objective: To evaluate the impact of different concentrations of AA on human sperm
parameters, oxidative stress and total antioxidant capacity (TAC).
Materials and Methods: In this laboratory study, semen samples were obtained from
healthy donors referred to the Taleghani Hospital, Tehran, Iran between June and
July 2019. Samples were divided into four groups (n = 10/each): one control and
three treatment groups (0.5, 1, and 2 mM of AA). After 2 hr of exposure to AA,
the superoxide dismutase and malondialdehyde levels were measured based on
colorimetric methods. The TAC was determined by the ferric-reducing antioxidant
power assay. Flow cytometry was performed to measure the intracellular reactive
oxygen species generation. Also, immunohistochemistry was done to determine the
effect of AA on tyrosine phosphorylation and carboxymethyl-lysine expression.
Results:Results of the study demonstrated that themotility and viability of spermatozoa
were significantly decreased after AA exposure (p < 0.001). This decrease was also
seen in the TAC and superoxide dismutase activity as well as in the phosphotyrosine
percentage compared with the control (p < 0.01). However, the carboxymethyl-lysine
and prooxidant activity including reactive oxygen species generation and lipid
peroxidation level increased (p < 0.001).
Conclusion: Overall, the results confirmed the detrimental effect of AA on human
spermatozoa which may be due to oxidative stress and decreased total antioxidant
levels. AA may reduce fertility by reducing sperm capacitation and motility.
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1. Introduction

The presence of acrylamide (AA) in many
commonly consumed foods such as fried and
oven-cooked foods was reported in 2002 by
the Swedish Authorities for the first time, which
attracted considerable concern worldwide (1). AA
(CH = CH-CONH2) is a white, odorless, crystalline
solid which has wide application in industry as well
as in wastewater treatment and soil conditioner
(2). The human daily uptake of AA is estimated
at 1–4 µg/kg body weight (3). The main route for
the formation of AA in high carbohydrate foods
such as potato chips and cereal products is the
Maillard reaction (a reaction between reducing
carbohydrates and free amino groups of proteins)
(4).

Genotoxicity and carcinogenicity of AA have
been documented especially in hormonally
regulated tissues such as the mammary
gland, thyroid, and testis mesothelium (5).
Therefore, it is considered a global concern
by the World Health Organization and has
come to be known as a reproductive toxin in
recent years (6, 7). Oral AA exposure induces
testicular damage as well as a decrease in
testosterone and epididymal sperm in rats
(8). A toxicological impact was previously
indicated in the male reproductive system
of weaning rats when abnormal sperms
and histopathological lesions appeared after
AA treatment (9). Research about AA toxic
effect on female mice indicated a major
impact on oocyte quality, DNA methylation,
reactive oxygen species (ROS) generation,
and apoptosis induction (10). ROS in small
amounts is essential for sperm physiological

function including maturation, capacitation,
and fertilization. However, when the balance
between free radical activity and the body’s
antioxidant system is lost, oxidative stress occurs.
It is suggested that the reproductive toxicity
of AA is mainly due to oxidative stress (11,
12).

The sperm cell is particularly susceptible
to oxidative attack due to the low volume of
cytoplasm and therefore low levels of antioxidant
enzymes, such as superoxide dismutase (SOD),
catalase, and glutathione peroxidase. On the
other hand, high levels of polyunsaturated
fatty acids make this cell vulnerable to free
radicals attack (13). Lipid peroxidation (LPO)
caused by ROS leads to the formation of
malondialdehyde (MDA) which is a stable
peroxidation product in seminal plasma. MDA
is a biomarker for measuring the level of oxidative
stress in the cell and a well-known indicator
of reduced fertility and sperm dysfunction
(14).

Oxidative stress impairs sperm motility, the
sperm membrane, and DNA integrity (15, 16). AA
is known to cause oxidative stress in the human
body and numerous studies have indicated its
toxic effect on the male reproductive system
particularly inmice and rats (8, 11). But the impact of
AA on human spermatozoa ROS generation total
antioxidant levels and sperm motility and capacity
is not fully understood yet.

Tyrosine phosphorylation has been used as
a hallmark to determine the influence of this
substance on sperm capacitation (17). Also, it
is considered that carboxymethylation of lysine
residues in the sperm tail is involved in sperm
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movement regulation because of its crucial role in
post-translational modification (15, 18).

This study highlights the effect of different
concentrations of AA on ROS generation,
LPO, total antioxidant capacity (TAC) levels,
and human spermatozoa parameters.
The rate of LPO was measured by MDA
levels. In addition, phosphorylation of
tyrosine as a capacitation indicator and
carboxymethyl-lysine expression were
evaluated.

2. Materials and Methods

2.1. Sperm preparation

In this laboratory study, human semen
samples (n = 40) were collected from fertile
men referred to the Taleghani Hospital, Tehran,
Iran, by masturbation after at least 48 hr of
abstinence. “Fertile” was defined as having
a formerly pregnant partner with a known
time of how long it took to get pregnant
of up to 12 months. The exclusion criteria
were smoking and having infertility problems.
Samples were transferred to the laboratory
within 1 hr of ejaculation and purification
was performed by Percoll discontinuous
gradient. Semen samples were placed on
the topmost layer of the 40% and 80%
Percoll gradient (semen: 40% Percoll: 80%
Percoll = 1:3:3, v/v) and centrifuged at 400× g for
15 min.

The cell pellet was washed with a 10% fetal
bovine serum (FBS, Merck, Germany) culture
medium and recentrifuged. Then, samples were
divided into four groups including a control

and three treatment (T1–T3) groups (0.5, 1,
and 2 mM AA, Merck KGaA, Germany diluted
in the DMEM/F12, (Merk, Germany) medium,
respectively). Next, 200 μl of the sperm solution
was added to 200 μl of AA solution and incubated
for 2 hr at 37°C (15).

2.2. Sperm motility, viability, and
morphology

Sperm motility was assessed using a
phase contrast microscope (Nikon, Japan)
by manual observation of 100 cells at ×250
magnification. Motility was classified into
one of the three movements – progressive
(grades A and B), nonprogressive (grade
C), and immotile (grade D) sperms. The
sperm parameters were analyzed according
to the World Health Organization criteria
(19).

The vitality of spermatozoa was evaluated by
using the vital stain Trypan blue, in accordance
with previous study (20). 10 λ Trypan blue
was mixed with 10 λ supernatant of sperm
and 2 λ formalin 10% diluted. Trypan blue
penetrates the postacrosomal region of dead
cells. A drop of stained samples was placed
on the slides and examined under ×1000
magnification. In each group, 200 sperm
heads were counted, and the percentage
of viable spermatozoa (unstained) was
calculated.

2.3. MDA assay

Seminal MDA levels were determined using
the Zell Bio colorimetrical kit (GmbH, Germany)
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according to the manufacturer’s protocol. The
kit’s sensitivity was equal to 0.1 mM. It uses the
reaction of MDA and thiobarbituric acid under a
high temperature. MDAwasmeasured in an acidic
media and heat (90–100°C) colorimetric ally at
535 nm.

2.4. SOD activity assay

Seminal SOD activity levels were determined
using the Zell Bio colorimetrical kit (GmbH,
Germany) according to the manufacturer’s
protocol. The kit’s sensitivity was equal to
0.044 U/mL. It uses a xanthine oxide reagent
at room temperature. This substance generates
superoxide in the presence of oxygen that
converts a colorless substrate to a yellow color
product. By increasing the levels of SOD in the
sample, a decrease in superoxide concentration
and yellow color occurs. Then, samples are read
at 450 nm wavelength.

2.5. TAC assay

To measure the TAC, the ferric-reducing
antioxidant power (FRAP) assay kit (Cell Biolabs,
USA) was used according to the manufacturer’s
instructions. This method can detect antioxidant
capacity as low as 0.2 mM Fe2+ equivalent
using colorimetry. The basis of the assay is the
reduction of ferric iron (Fe3+) to ferrous iron (Fe2+)
by antioxidants present in the sample. At the end
of the experiment, the probe of the kit developed
a blue color that was read at 540–600 nm in this
case. The antioxidant potential of samples was
determined based on an iron standard curve and

results were calculated at Fe2+ equivalents (µM)
or FRAP value.

2.6. ROS assay

The dichlorofluorescin diacetate flow cytometry
method was performed to measure the
intracellular ROS generation after exposure
of the sperm samples to AA, according
to the manufacturer’s instructions (Abcam,
USA).

Dichloro-dihydro-flourescein diacetate
DCFH-DA chemically reacts with ROS and
produces a highly fluorescent compound
called dichlorofluorescein which exits the
cell. Finally, the fluorescent intensity was
measured by FACSDiva (BD Bioscience, USA)
flows cytometry. Data were analyzed using
Flowjo software version 10.7 (BD Bioscience,
USA).

2.7. Immunohistochemistry

2.7.1. Carboxymethyl-lysine

After treatment with AA, sperm samples (5
× 106/ml) were fixed with 4% paraformaldehyde.
The samples were air-dried and washed 4× in
phosphate buffered saline (PBS, Merck, Germany).
To recover the antigen, 2 N hydrochloric acid
(Merck, Germany) was poured on the samples
for 30 min. Then, 1 mM borate buffer (Merck,
Germany) was added to neutralize the acid
for 5 min and the cells were washed with
PBS.

The samples were permeabilized with 0.3%
Triton for 30min. The blocking agentwas 10%goat
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serum for 30 min at room temperature. Primary
antibody (mouse monoclonal anticarboxymethyl-
lysine antibody, ab125145, USA) was diluted
(1/100) in bovine serum albumin (Merck, Germany)
overnight and incubated in a fridge in a
humidified chamber. Samples were washed
4× in PBS and incubated with secondary goat
anti-mouse IgG (Alexa Flour 488, abc150113) at
dilution 1/150 in Bovine Serum Albumin (Merck,
Germany) at 37°C for 1 hr and 30 min in a
dark place. Further, the slides were washed
3× in PBS and exposed to DAPI (1/2000) for
10 min at room temperature, then washed
with PBS. Sperms were examined under a
fluorescence microscope (Olympus, Japan) using
a ×400 objective. On each study slide, 200
sperm cells were evaluated for confirmation
of markers (antibody expression and nucleus
staining).

2.7.2. Phosphotyrosine

After treatment with AA, sperm samples (5
× 106/ml) were capacitated with dcAmp and
pentoxifylline at 37°C for 3 hr. Then the samples
were treated as explained earlier. The only
difference was in the primary and secondary
antibodies which were P-T-YR and goat anti-rabbit
IgG (abc150077), respectively.

2.8. Ethical considerations

The scientific use of the samples was approved
by the Research Ethics Committee of Medical
Science (Code: IR.IAU.TMU.REC.1398.091). Semen
samples were collected from healthy men with

at least one child. Written informed consent was
obtained from all subjects.

2.9. Statistical analysis

All experiments were done with three
replications. Data were analyzed by Graphpad
Prism version 8.4.3 (686) (Graphpad, USA)
using one-way ANOVA, followed by Tukey-
Kramer post hoc tests. The difference in the
mean values at p < 0.05 was considered as
significant.

3. Results

3.1. Impact of AA on human
spermatozoa parameters

Exposure of human spermatozoa to AA caused
a significant decrease in the percentage of
progressive spermatozoa and the total motility
at all doses of AA. Also, the percentage of
immotile spermatozoa was significantly increased
at high doses in comparison with the control
(Tables I and II). In addition, the viability of the
spermatozoa decreased significantly compared
with the control.

3.2. Impact of AA on MDA, TAC, and
SOD levels

Table III demonstrates the significant increase
in the LPO and MAD production observed at
all doses of AA (p < 0.01). Conversely, the
levels of TAC and SOD activity showed a
significant decrease especially at high doses of
AA.
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3.3. Impact of AA on ROS levels

Results of flow cytometry revealed
that after exposure of spermatozoa to
different concentrations of AA, the ROS
levels increased significantly (Figure 1, and
Table IV).

3.4. Impact of AA on carboxymethyl-
lysine expression

Figure 2 and Table V show the expression
of carboxymethyl-lysine in the tail of the human
spermatozoa in the control and acrylic-treated
groups (T1–T3). By increasing the concentration
of AA, the percentage of protein expression

increased: at 1 and 2 mM concentrations,
the expression of carboxymethyl-lysine was
significantly higher than in the control.

3.5. Impact of AA on phosphotyrosine
expression

Figure 3 and Table VI show protein
phosphorylation in tyrosine amino acid
residues was indicated in the control
and AA-treated groups (T1–T3) using
immunohistochemistry. By increasing the
concentration of AA, the percentage of
tyrosine phosphorylation decreased significantly
at concentrations of 1 and 2 mM of the
AA.

Table I. Analysis of the sperm parameters after 2 hr of exposure with different concentrations of AA (0.5, 1, and 2 mM)

Variables (%) Control Treatment 1 Treatment 2 Treatment 3
Progressive motility 73.81 ± 1.18 62.63 ± 2*** 44.61 ± 0.6*** 34.62 ± 0.7***
Total motility 87.50 ± 1.5 82.70 ± 2.25 72.23 ± 1.96*** 68.72 ± 1.9***
Immotile 12.5 ± 1.5 16.77 ± 1.2 27.29 ± 1.25 31.28 ± 0.95**
Viability 95.98 ± 0.52 84.09 ± 1.7*** 76.47 ± 1.16*** 64.06 ± 1.33***
Data are presented as Mean ± SEM and analyzed by Tukey-Kramer test. **P < 0.01, ***P < 0.001

Table II. The difference of sperm parameters in AA treatment and control groups

– Mean difference p-value 95% CI of the difference
Progressive motility

Control vs. treatment 1 11.18 0.001 6.346–16.02
Control vs. treatment 2 29.21 0.001 24.37–34.04
Control vs. treatment 3 39.20 0.001 34.36–44.04

Total motility
Control vs. treatment 1 4.797 – –2.528–12.12
Control vs. treatment 2 21.27 0.001 13.94–28.59
Control vs. treatment 3 34.78 0.001 27.46–42.11

Immotile
Control vs. treatment 1 –1.269 – –7.199–4.661
Control vs. treatment 2 –4.795 – –10.72–1.135
Control vs. treatment 3 –8.785 0.01 –14.71–2.855

Viability
Control vs. treatment 1 11.88 0.001 7.107–16.66
Control vs. treatment 2 19.50 0.001 14.73–24.28
Control vs. treatment 3 31.91 0.001 27.14–36.69

Tukey’s multiple comparison test
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Table III. Comparison of MDA, TAC, and SOD concentrations in the control and AA (0.5, 1, and 2 mM) exposed groups

Variables Control Treatment 1 Treatment 2 Treatment 3

MDA (nmol/ml) 17.55 ± 2.5 33.26 ± 5.6** 44.33 ± 4.3** 59.69 ± 3.4***
TAC (μM/l) 0.434 ± 0.06 0.320 ± 0.08 0.213 ± 0.08* 0.165 ± 0.04**
SOD (IU/ml) 27.62 ± 2.67 20.15 ± 2.56** 13.99 ± 1.32** 6.96 ± 3.86**
Data are presented asMean±SDand analyzed by Tukey-Kramer test. *P<0.05, **P<0.01, ***P<0.001. MDA:Malondialdehyde,
TAC: Total antioxidant capacity, SOD: Superoxide dismutase

Table IV. The difference of ROS levels in AA treatment and control groups

ROS Mean difference q-value p-value 95% CI of the diff

Control vs. treatment 1 11.18 8.813 0.05 6.346–16.02
Control vs. treatment 2 29.21 23.01 0.01 24.37–34.04
Control vs. treatment 3 39.20 30.89 0.001 34.36–44.04
Data analyzed by Tukey’s Multiple Comparison Test. ROS: Reactive oxygen species

Table V. The difference of carboxymethyl-lysine expression in AA treatment and control groups

CML Mean difference q-value p-value 95% CI of the difference

Control vs. treatment 1 -3.430 2.459 - –9.28–2.427
Control vs. treatment 2 -23.38 16.76 0.001 –29.24–17.52
Control vs. treatment 3 -33.45 23.98 0.001 –39.30–27.59
Data analyzed by Tukey’s Multiple Comparison Test. CML: Carboxymethyl-lysine

Table VI. The difference of phosphotyrosine in AA treatment and control groups

Phosphotyrosine Mean difference q-value p-value 95% CI of the difference

Control vs. treatment 1 3.095 1.986 – –3.450–9.640
Control vs. treatment 2 20.16 12.93 0.001 13.61–26.70
Control vs. treatment 3 31.05 19.92 0.001 24.50–37.59
Tukey’s Multiple Comparison Test
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Figure 1. Dichlorofluorescin diacetate flow cytometry in human spermatozoa after exposure to different concentrations of AA (a:
0, b: 0.5, c: 1, and d: 2 mM). Comparison of human spermatozoa ROS levels in different groups of treatment (e).
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Figure 2. Immunofluorescent staining of carboxymethyl-lysine expression in the control and AA-treated groups (T1–T3). (a)
Expression of carboxymethyl-lysine antibody can be seen with a green color by the fluorescent microscope. (b) DAPI was added
to examine the presence of sperm cells. The sperm nuclei were stained by blue color. (c) Combination of both protein expression
and nucleus staining. (d) Comparison of carboxymethyl-lysine expression in different treatment groups.

Figure 3. Immunofluorescent staining of phosphotyrosine in the control and AA-treated groups (T1–T3). (a) Expression of
phosphotyrosine antibody can be seen with a green color by the fluorescent microscope. (b) DAPI was added to examine the
presence of sperm cells. The sperm nuclei were stained by blue color. (c) Combination of both protein expression and nucleus
staining. (d) Comparison of the percentage of phosphotyrosine expression in different treatment groups.

4. Discussion

So far, studies on the effect of AA on fertility
are limited to rodent models (21, 22). The present
research is the first comprehensive study on the

effect of AA on human spermatozoa. There were
no major limitations in this study. According to the
findings of this study, all doses of AA significantly
reduced sperm viability and motility. The results
of the present work are consistent with the results
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of a previous study about the effect of oral
treatment of AA on the mouse spermatozoa. It
seems that AA, through its effects on membrane
integrity, decreases sperm vitality, causing sperm
movement disorder such as abnormal sperm
parameters in total and progressive motility (21).

Alterations in the cellular redox status may
occur through an imbalance between oxidant and
antioxidant systems in the semen; therefore, we
investigated the rate of oxidative impairment both
with the positive factor of antioxidant enzyme
activity and the negative factor of oxidative stress
correlated with the sperm parameters.

It has been reported that the coexistent of AA
and trans fatty acids (which exist in many thermally
processed foods) enhances the oxidative stress in
mice epididymal sperm by upregulating the MDA
levels and reducing the SOD activity, as well as
glutathione peroxidase (23).

In our previous study, it was found that
the mitochondrial membrane potential decreased
after 2 hr of sperm incubation with AA (24).
On the other hand, AA could inhibit the activity
of glotation s-transferase enzymes (a family of
phase-II detoxification enzymes that catalyze
the conjugation of glutathione) leading to cell
membrane damage. These changes also appear
to be due to an increase in the cellular ROS
content which disrupts the process of oxidative
phosphorylation in the mitochondria and the
production of ATP in the cells (24, 25). As a result,
it is associated with reduced motility, inhibition of
the acrosomal reaction, and reduced sperm ability
for fertilization (26).

AA exerts its effects at least in some parts by
weakening the antioxidant status in the sperm

cells (22). It was reported that exposure to AA in
mice caused reduced sperm motility and impaired
fertility (27). As has been mentioned, LPO is one
of the major mechanisms of cellular damage
caused by ROS, as the sperm membrane is rich
in unsaturated fatty acids that are very sensitive
to free radicals. MDA is the main indicator of
LPO identification (14). Our data also confirmed an
increase in MDA levels following AA exposure.

The proposed mechanism for the effect of
ROS on sperm function and structure is through
inhibition of the activity of enzymes such as
glucose 6 phosphate dehydrogenase (G6PD). The
produced H2O2 passes through the membrane,
enters the cell, and inhibits the activity of this
enzyme. G6PD controls the influx of glucose
through the pentose phosphate pathway which
in turn controls the intracellular presence of
NADPH. NADPH acts as an electron source
for the spermatozoa to produce ROS by the
enzyme known as NADPH oxidase (28). The
inhibition of G6PD reduces NADPH and causes
simultaneous accumulation of glutathione oxidase
and reduction of glutathione. This can enhance
phospholipid peroxidation in the sperm which
decreases membrane fluidity and integrity (29). As
a result of this, the antioxidant defense system
is disrupted which can lead to defective sperm
function.

Carboxymethylation of spermatozoa tail
proteins on lysine residues is a post-translational
modification which is necessary for normal sperm
development and movement. Carboxymethyl-
lysine is a common and potent advanced glycation
end (AGE) compound on all parts of sperm cells
particularly in the head region that is surrounded
by the acrosomal region (18). Increased levels
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of the AGEs lead to sperm damage mostly
through defects in DNA integrity (15). In this study,
immunohistochemistry of carboxymethyl-lysine
demonstrated a significant increase after 2 hr of
exposure with 1 and 2 mM of AA. An increase
in the AGEs compounds which is produced
during the Maillard reaction is detrimental to
health and fertility (30). Therefore, diet seems
to be one of the major factors reducing semen
quality and male fertility. As mentioned earlier,
fast foods and thermally processed foods are
the major sources of AA production. One of
the aggravating factors for AGE formation is
oxidative stress (31). In the present research,
AA produced oxidative stress by increasing the
ROS and MDA levels and decreasing the TAC
and SOD. This means that AA probably exerts
its effects by increasing carboxymethyl-lysine
expression and raising oxidative stress in the
sperm cell.

Capacitation is a complex event in the female
reproductive system during which the sperms
acquire fertilization potential. It has been reported
that modifications including an increase in
tyrosine phosphorylation of sperm membrane
proteins are necessary for capacitation. The
pattern of localization of phosphorylated tyrosine
has been shown in the neck and flagellum of
the sperm by immunofluorescence studies (15).
Tyrosine phosphorylated sperm proteins in the
flagellum are related to hyperactivated motility
which is initiated during in vitro capacitation (17).
As a result, abnormalities in sperm motility due to
decreased tyrosine phosphorylation levels are not
uncommon. The immunohistochemistry results of
the present study also showed a decrease in the
phosphotyrosine levels.

5. Conclusion

The results of this study indicated that different
concentrations of AA had a negative effect on
the motility and viability of human spermatozoa.
AA could reduce the sperm motility and ability for
capacitation by increasing the ROS levels relative
to the cell’s antioxidant capacity. Therefore, given
the rising male infertility rate and increasing
consumption of deep-fried foods containing AA,
more attention should be paid to the effects of AA
on male infertility.
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