The Most Important Herbs Used in the Treatment of Sexually Transmitted Infections in Traditional Medicine

Mohammadreza Nazer¹, Saber Abbaszadeh², Mohammd Darvishi³, Abdolreza Kheirollahi⁴, Somayeh Shahsavari⁵, and Mona Moghadasi²

¹MPH, Associate Professor, Department of Infectious Diseases, Lorestan University of Medical Sciences, Khorramabad, Iran
²Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
³Associate Professor of Infectious Diseases, Infectious Research Center (IDTMRSC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
⁴Urology Specialist, Lorestan University of Medical Sciences, Khorramabad, Iran
⁵Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran

Abstract

Sexually transmitted diseases (STDs) or venereal diseases are transmitted through various methods of sexual intercourse (oral, vaginal, and anal). The predisposition to this type of diseases and infections depends on the immunity system of the body, so the lower the immunity system's strength, the greater the risk of Sexually transmitted infections (STIs). The most important pathogenic causes of STIs include bacteria, viruses, and parasites. Phytochemical investigations have shown that medicinal plants are a rich source of antioxidant compounds, biologically active compounds, phenols, etc. They can have an inhibitory effect on germs and infectious viruses and are very important for a variety of parasitic diseases, microbial infections, and STIs. Some of the most important medicinal plants that produce inhibitory effects on the growth and proliferation of pathogenic agents of the STIs were reported in the present article. Based on the results obtained from the review of numerous articles indexed in the databases the Institute for Scientific Information, Scopus, PubMed, Google Scholar, etc., a number of plants have been reported to be used in the treatment and prevention of genital tract diseases and STIs, and to produce antiviral and antimicrobial effects, including Taxillus, Aristolochia, Syzygium cumini, Albizia adiantifolia, Bidens pilosa, Carica papaya, Ranunculus, Peltophorum africanum, Vachellia karroo, Rhoicissus tridentate, Houttuynia cordata, Panax notoginseng, Nelumbo nucifera, Astragalus, Hypericum aethiopicum, Spondias mombin, Jatropha zeyheri, Ximenia caffra, Trichilia dregeana, Clematis brachiate, Tabernaemontana, Sarcophyton. Phytochemical investigations have examined the therapeutic and clinical effects of medicinal plants, and the use of their active ingredients to produce herbal drugs has been addressed. The results of phytochemical investigations have shown that the most important compounds of these plants include quercetin, isoquercitrin, Dammaren-type saponin, flavonoids, alkaloids, flavonoids, glycosides, terpenoids, steroids, astragalosides, flavonoids and polysaccharides, α-pinene, β-pinene, α-pinene, quercetin, myricetin and luteolin flavonoids, β-pinene, 1,3,8-p-menthatriene, ledene, m-methane, linalyl acetate and...
3-carene, β-sitosterol, lupeol, lupeol, sitosterol, spathulenol, β-sitostenone, γ-sitosterol, stigmasterol. Due to the main active ingredients and flavonoids of these plants, they can be used to produce herbal drugs that reduce genital tract (microbial, viral, and fungal) infections and STIs, and therefore reduce pain and suffering in patients.

Keywords: sexually transmitted infections, genital tract infections, antibacterial and antiviral medicinal plants, medicinal plants, natural antioxidants

1. Introduction

Sexually transmitted diseases (STDs) or infections (STIs) or venereal diseases are umbrella terms to refer to various diseases that are transmitted through various methods of sexual intercourse (oral, vaginal, and anal). Some of these diseases are transmitted via other routes than sexual intercourse [1–5]. STDs may be caused by bacteria, virus, or parasite. The symptoms, transmission routes, and treatment methods of the STDs are different [6–9]. Almost all people are predisposed to STDs, and the lower the strength of their immune system, the more likely they are to develop STDs [10–13].

Using certain devices such as condoms can reduce the risk of developing STDs, but there are no fault-free and completely safe methods to prevent the development of these diseases. Some diseases, such as hepatitis, can be transmitted through a contact with the infected person's blood without sexual intercourse, but some other diseases, such as gonorrhea, are transmitted only through sexual intercourse [11–14].

The most important STIs, which are caused by bacteria, can be easily treated with antibiotics. Chlamydia; gonorrhea, syphilis. Chlamydia: Chlamydia is a bacterial infection affecting the genital tract [15–18]. Viral STDs: Some STDs are caused by viral pathogens that are much more difficult or even impossible to cure. Their symptoms can rarely be eliminated; hepatitis B, hepatitis C, herpes simplex virus (HSV), human immunodeficiency virus (HIV), human papillomavirus (HPV), and genital warts. HIV infection is caused by the human immunodeficiency virus. HIV affects the ability of the body to fight viruses, bacteria, and fungi that develop during the disease and can lead to AIDS. AIDS is a life-threatening disease [19–22]. Parasitic STDs: Some STDs are caused by parasitic agents. This kind of STDs are caused by sexual intercourse or through close contact with the skin, including scabies, trichomonas, and pubic lice [23–25]. Trichomonas is one of the most common STDs caused by a microscopic parasite called Trichomonas.
vaginalis. The disease is transmitted and spread through sexual intercourse in people who are predisposed to infectious diseases. This disease most often affects the urethra in men and vagina in women but is usually asymptomatic [26–29].

1.1. Vaginal infections

Vaginal infection: A vaginal infection has symptoms similar to those of an STD, but it is not classified as an STD. Genital and urinary tract infections: Genital and urinary tract infections are uninvited guests of any woman’s body [30–33]. The secretions and infections of the female reproductive system: Abnormal increase in vaginal discharge is due to a variety of reasons, commonly referred to as vaginitis [34, 35].

A. Vaginal yeast infections

In women’s vagina, yeast normally lives in small amounts, and the acidic environment of the vagina prevents the growth of the yeast. Now, if the acidity of the vaginal environment is reduced for some reason, the yeast will grow and lead to vaginal yeast infection. Various genital tract infections are among the common diseases that many women at a wide variety of ages may develop, especially vaginal yeast infection, which is more likely to develop during pregnancy [36–38].

B. Bacterial vaginitis

The vaginal environment contains a type of bacterium known as good vaginal bacterium and also another bacterium called anacrobies. Sometimes, without a specific cause, this bacterium grows excessively and leads to illness [39–41]. The best treatment for STIs (microbial and fungal) is herbal medicines that have the greatest therapeutic effect with the least side effects. To treat the genital yeast infection, the recommendations of traditional medicine can be followed [42–44].

Some of the therapeutic methods and medications recommended by traditional medicine across the world for STIs and genital tract infections are as follows:

1.1.1. Herbal treatments for STIs and genital tract infections

Apple vinegar, Apple vinegar is a very strong antibiotic and disinfectant agent, and its antibacterial and antifungal properties boost the immune system of the body against
pathogens [45–48]. Rosemary, Rosemary is an anti-inflammatory and antibacterial plant, and therefore is used to treat various types of infections. The easiest way to exploit rosemary properties is to use the tea or oily extract of the plant [49–52]. Garlic, Garlic is a natural, highly effective antibiotic for the treatment of various infections and its antibacterial properties are microbicidal. The extract of this plant eliminates vaginal yeast infections and reduces pain [53–56]. Treating gynecological infections by using tea tree oil, Tea tree oil treats the infection with its strong antibacterial, antifungal, and antimicrobial properties [57–59]. Basil leaf, Basil leaf is a strong microbicide and can destroy a variety of fungi and bacteria [60–62]. Aloe vera, The use of A. vera and its gel is effective in treating infection and remove itching. The nectar of the plant is effective to remove itching caused by the infection in the genitalia [63–66]. Blueberries, Blueberries are fruits that have many usages in traditional medicine and are recommended to prevent urinary tract illnesses. One of the chemical compounds of the fruit is a kind of substance called PACS that can kills the bacteria that causes the infection in the body and prevents their proliferation and accumulation. Eating blueberries is effective to get rid of fungal infection [67–70]. Oak, Oak tree bark and leaves contain tannin, sugar, gallic acid, malic acid, quercetin, mucilage, pectin, resin, and oil. Therefore, this plant has a very strong antibacterial property and produces strong effects in reducing and treating genital tract bacterial diseases and STIs [71–74]. Eucalyptus, Eucalyptus essential oil exhibits antimicrobial properties against certain bacteria. In general, the antimicrobial effects of this plant are comparatively greater on gram-positive bacteria. In some cases, eucalyptus has been prescribed for the treatment of gonorrhea, with very promising results [73–77]. Silybum marianum, S. marianum is also one of the herbal drugs that are used for treating STDs with traditional form of medicine. The S. marianum is rich in silymarin (a natural material that can destroy T. vaginalis), which makes the plant an ideal choice to fight against certain types of STDs. In addition, this substance is also used to boost the immune system of the body and therefore helps fight the parasite that causes infection in the body [78–81]. Soma, Soma is known as one of the effective traditional and herbal drugs as well as a home remedy for STDs due to its potent antibacterial properties. Leaves, tree bark, roots, and fruit of soma have high pharmaceutical value, and its anti-inflammatory and antibacterial properties will certainly help fight certain diseases like gonorrhea and syphilis. In addition, soma contains saponin, which consists of phytochemicals (plant chemicals) that help kill all types of germs, boost the immune system, and restore the body [82–85].
2. Methods

The data used in this review were obtained from scientific articles indexed in the databases such as Iran Medex, Irando, ISI, PubMed, Scopus, Web of Science, Scientific Information Database, Magiran, Google Scholar, etc., that were retrieved using the search terms: sexually transmitted infections, genital tract infections, antibacterial and antiviral drugs, medicinal herbs and natural antioxidants, medicinal herbs effective on genital tract microbial infections, medicinal herbs effective on genital fungal infection, medicinal herbs effective on genital viral infections, effects of herbal therapy on sexually transmitted infections, antibacterial and antifungal effects of plant extracts and essential oils.

In this review article, a total of 190 papers were reviewed. After the preliminary review, 70 articles were found to be eligible for the subject of our study. Relevant articles were included and irrelevant ones excluded. Finally, 70 articles were found to be related to the purpose of our study and were selected.

3. Results

Medicinal plants that were reported in this review are very important for the treatment and prevention of various types of parasitic and microbial infections and STIs (Table 1).

Based on the results obtained from our review of numerous articles, a number of plants have been reported to be used in the treatment and prevention of genital tract diseases and STIs, and to produce antiviral and antimicrobial effects, including Taxillus, Aristolochia, Syzygium cumini, Albizia adianthifolia, Bidens pilosa, Carica papaya, Ranunculus, Peltophorum africanum, Vachellia karroo, Rhoicissus tridentate, Houttuynia cordata, Panax notoginseng, Nelumbo nucifera, Astragalus, Hypericum aethiopicum, Spondias mombin, Jatropha zeyheri, Ximenia caffra, Trichilia dregeana, Clematis brachiate, Tabernaemontana, Sarcophyton.

Additional information on the pharmaceutical and therapeutic plants and also their details are given in Table 1.

The results of phytochemical investigations have shown that the most important compounds of the plants include: total flavonoids and phenolics, steroids, Alkaloids, quercetin, isoquercitrin, Dammarane-type saponin, flavonoids, alkaloids, flavonoids,
glycosides, terpenoids, steroids, astragalosides, flavonoids and polysaccharides, α-pinene, β-pinene, α-pinene, quercetin, myricetin and luteolin flavonoids, β-pinene, 1,3,8-p-menthatriene, ledene, m-menthane, linalyl acetate and 3-carene, β-sitosterol, lupeol, β, sitosterol, spathulenol, β-sitostenone, γ-sitosterol, stigmasterol., phenolic acid and flavonoids.

The most important active ingredients and important flavonoids of these plants are shown in Table 2.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Family Name</th>
<th>Part of plant</th>
<th>Type affect</th>
<th>Common Name</th>
<th>Therapeutic effect</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxillus</td>
<td>Loranthaceae</td>
<td>Branch</td>
<td>Ethanolic extract</td>
<td>Taxillus</td>
<td>Ethanol extract of this plant has high antioxidant properties and significantly decreases the expression of mRNA, iNOS, and COX-2 by induction of LPS, followed by the reduction of NO and PGE2 production. It also has an effect on the regulation of inflammatory cytokines such as IL-1β TNF-α, and because of LPS it reduces the expression of IL-1β too much. Concentrations of 50 μg/ml suppress the expression of TNF-α, which is why an anti-inflammatory agent is known to be infectious.</td>
<td>89</td>
</tr>
<tr>
<td>Aristolochia</td>
<td>Aristolochiaceae</td>
<td>Aerial part and Ethanolic extract</td>
<td>Aqueous and Ethanolic extract</td>
<td>Pipevine</td>
<td>The antiparasitic property of this plant can be made through a genome such that compounds that cause damage to DNA are often known as antimicrobial, antimicrobial, and cytotoxic. General damage to DNA occurs when alkylation agents attach to DNA by covalent bonding if the enzymatic repair of DNA does not resolve the alkalinity. Spot mutations, removal, or alteration of the mold in parenchyma, which, if located in important protein regions, can cause the parasite to die.</td>
<td>90</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Family Name</td>
<td>Part of plant</td>
<td>Type affect</td>
<td>Common Name</td>
<td>Therapeutic effect</td>
<td>Ref.</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>Syzygium cumini</td>
<td>Myrtaceae</td>
<td>Aerial part</td>
<td>Methanolic extract</td>
<td>Black plum</td>
<td>The methanolic extract of this plant has antibacterial effects against E. coli and Pseudomonas aerogenase that cause urinary tract infections and sexually transmitted infections. This plant with a concentration of 4 mg/disc, on average, has an inhibition zone of 23 mm in E. Coli and 18 mm in Pseudomonas in the disc-diffusion method, also in the MIC method in both bacteria at a concentration of 1.5 mg/ml.</td>
<td>91</td>
</tr>
<tr>
<td>Albizia adianthifolia</td>
<td>Fabaceae</td>
<td>Crust</td>
<td>Aqueous extract</td>
<td>Flat-crown</td>
<td>The blueberry extract of the bark with a concentration of 100 μg/ml has anti-bacterial, anti-microbial properties, and inhibits prostaglandin synthesis and increases cell activity as a result of the treatment of STI-induced ulcers. Effective Nissiagonuria with MIC 645 mg/ml.</td>
<td>92</td>
</tr>
<tr>
<td>Bidens pilosa</td>
<td>Asteraceae</td>
<td>Leaf</td>
<td>Aqueous extract</td>
<td>Black-jack</td>
<td>The extract of the leaves of this plant has a concentration of 100 μg/ml effective on syphilis, but it is not effective in the short term. This plant has anti-malarial properties, prostaglandin synthesis inhibitor, anti-inflammatory, anti-fungal and antibacterial agents, accelerated cell activity, and wound healing. The effect of STI on Neisseria gonorrhoeae is U. urealyticum—O. urealytica. The mean MIC of mg/ml is 83.2.</td>
<td>92</td>
</tr>
<tr>
<td>Carica papaya</td>
<td>Caricaceae</td>
<td>Leaf</td>
<td>Aqueous extract</td>
<td>Papaya</td>
<td>Blue leaf extract of this plant is effective against Candida infection - STI gonorrhea, antimicrobial, bacteriostatic activity, antimalarial, and an average MIC of 13.1 mg/ml.</td>
<td>92</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Family Name</td>
<td>Part of plant</td>
<td>Type affect</td>
<td>Common Name</td>
<td>Therapeutic effect</td>
<td>Ref.</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>Ranunculus</td>
<td>Ranunculaceae</td>
<td>Leaf</td>
<td>Aqueous extract</td>
<td>The aqueous extract of the leaf of this plant has an effect on U. urealyticum (0.02 mg/ml), which has antimicrobial properties, and MIC is 73 mg/ml.</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Peltophorum africanum</td>
<td>Fabaceae</td>
<td>Root</td>
<td>Aqueous extract</td>
<td>The root extract of this plant is used at concentration (0.04 mg/ml) in the treatment of Venereal diseases and cephalyses. It is antibacterial and antiviral and acts against U. urealyticum. MIC: 2.68 mg/ml.</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Vachellia karroo</td>
<td>Fabaceae</td>
<td>Root</td>
<td>Ethanolic extract</td>
<td>The ethanolic extract of this plant has antibacterial properties and also has an anthraquinones secondary composition, which is used in the treatment of STD and has the highest effect on Neisseria gonorrhoea and Klebsiella with MIC0 /8 mg/ml. The IC50 values are 0/83 μg/ml.</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Rhoicissus tridentate</td>
<td>Vitaceae</td>
<td>Root</td>
<td>Ethanolic extract</td>
<td>The ethanolic extract of the plant is effective in treating bladder infection and has a secondary composition of alkaloids, flavonoids, tannins. It also has antifungal and antioxidant properties and has an effect on E.coli and Candida albicans with an MIC of 0.8. IC50 values are 0.06 μg/ml.</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Houttuynia cordata</td>
<td>Saururaceae</td>
<td>Aerial part</td>
<td>Aqueous extract</td>
<td>The aqueous extract of this plant is effective in the treatment of HSV. Its effective compounds include quercetin, isoquercitrin. This plant has a concentration of 100 μM by inhibiting the activity of NF-kB as well as blocking the binding of the virus, its penetration and proliferation. IC50 (μg/mL) is 692 and the CC50 μg/mL is more than 100,000.</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Family Name</td>
<td>Part of plant</td>
<td>Type affect</td>
<td>Common Name</td>
<td>Therapeutic effect</td>
<td>Ref.</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Panax notoginseng</td>
<td>Araliaceae</td>
<td>Root</td>
<td>Aqueous extract</td>
<td>Chinese ginseng</td>
<td>This plant contains the ST-4 notoginsenoside compound and the extract is made from the root. It is a Dammarane-type saponin that prevents HSV-1 penetration and viral protein synthesis (vp5) and replicates the HSV virus. The IC₅₀ (µg/mL) is 67.0 ± 16.4 and the mean CC₅₀ is 56.4 ± 510.5 µg/mL.</td>
<td>95</td>
</tr>
<tr>
<td>Nelumbo nucifera</td>
<td>Nelumbonaceae</td>
<td>Aerial part</td>
<td>Aqueous extract</td>
<td>Indian lotus</td>
<td>The extract of this plant discontinues αTIF/C1/Oct-1/GARA T multiprotein, decreases the expression of ICP0 (infected cell polypeptide 0) and ICP4, forms the DNA complex and is effective in the treatment of HSV. The IC₅₀ (µg/mL) is 21.3 ± 1.6 µg/mL.</td>
<td>95</td>
</tr>
<tr>
<td>Astragalus</td>
<td>Fabaceae</td>
<td>Aerial part</td>
<td>Aqueous extract</td>
<td>Milkvetch</td>
<td>This plant has a composition of astragalus polysaccharide and polysaccharide. It acts on the TLR3/NF-κB signaling pathway and increases the expression of TNF-α/IL-6. CC₅₀ µg/mL is 120. This plant does not directly affect the virus, but it protects against astrocytes by increasing the immune function of the body against HSV.</td>
<td>95</td>
</tr>
<tr>
<td>Hypericum aethiopicum</td>
<td>Hypericaceae</td>
<td>Root</td>
<td>Ethanolic and aqueous extract</td>
<td>Saint John’s wort</td>
<td>The aqueous and alcoholic extract of this plant with a concentration of 0.3 mg/ml against Neisseria gonorrhoeae has the highest sensitivity in the concentration of 0.2 mg/ml to Gardnerella vaginalis. The alcoholic extract of this plant is more effective than blue.</td>
<td>96</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Family Name</td>
<td>Part of plant</td>
<td>Type affect</td>
<td>Common Name</td>
<td>Therapeutic effect</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Spondias mombin</td>
<td>Anacardiaceae</td>
<td>Leaf</td>
<td>Methanolic extract</td>
<td>Yellow mombin</td>
<td>The leaf methanolic extract of this plant has good effects on S. pyogenes, S. typhi, E. coli, and S. aureus, and the phenolic acid present in the antibacterial effects against B. cereus, S. pyogenes, and Mycobacterium fortuitum. The MIC for B. cereus is 62.5 μg/ml and for the rest of the bacteria more than 1000.</td>
<td></td>
</tr>
<tr>
<td>Jatropha zeyheri</td>
<td>Euphorbiaceae</td>
<td>Root</td>
<td>Extract</td>
<td>Nettlespurge</td>
<td>Estonian root extract of this plant has a good effect on STI and against Candida albicans and Cryptococcus neoformans. It has a great effect on MIC 0.20 mg/ml for each bacterial strain.</td>
<td></td>
</tr>
<tr>
<td>Ximenia caffra</td>
<td>Olacaceae</td>
<td>Root</td>
<td>Aqueous extract</td>
<td>Mtundakula</td>
<td>The aqueous extract of the root of this plant is effective on U. urealyticum, O. urealytica, and N. gonorrhoeae with an average MIC of 61.2 mg/ml and is used in the treatment of venereal diseases and STI. It has antibacterial, antimalarial, and antiinflammatory properties.</td>
<td></td>
</tr>
<tr>
<td>Trichilia dregeana</td>
<td>Meliaceae</td>
<td>Whole plant</td>
<td>Aqueous extract</td>
<td>Forest natal-mahogany</td>
<td>The aqueous extract of this plant is used in the treatment of gonorrhea A and syphilis with an average MIC of 2 mg/ml. This plant inhibits prostaglandin synthesis and is used as anti-inflammatory, antibacterial, and microbial agents.</td>
<td></td>
</tr>
<tr>
<td>Clematis brachiata</td>
<td>Ranunculaceae</td>
<td>Leaf</td>
<td>Aqueous extract</td>
<td>Traveller's joy</td>
<td>Blue leaf extract of this plant is used to treat syphilis. This plant inhibits prostaglandin synthesis and is antimalarial. The mean MIC is 4.05 mg/ml.</td>
<td></td>
</tr>
<tr>
<td>Tabernaemontana</td>
<td>Apocynaceae</td>
<td>Crust</td>
<td>Aqueous extract</td>
<td>Milkwood</td>
<td>The aqueous extract of this plant has anti-fungal, cytotoxic, antibacterial, and antimycobacterial properties. The mean MIC is 2.44 mg/ml.</td>
<td></td>
</tr>
</tbody>
</table>
Scientific Name | Family Name | Part of plant | Type affect | Common Name | Therapeutic effect |
--- | --- | --- | --- | --- | --- |
Sarcophyton | Orchidaceae | Stem | Aqueous extract | Sarcophyton | Blue stem extract of this plant is used in the treatment of non-related infections with HIV/AIDS and gonorrhea, and has the antibacterial properties of treatment of wound infection and diarrhea and dysentery. MIC average is 2.69 mg/ml. |

4. Discussion

Obtaining information on STDs and the methods of their prevention and treatment is one of the most important issues that everyone should be aware of. Fortunately, today, with the developments in technology and the promotion of human knowledge and science, many people around the world have become aware of these diseases, or at least they have become familiar with the methods of their prevention and treatment in modern medicine; however, therapeutic methods of traditional medicine and herbal supplements to treat common sexual and genital tract diseases are very important in this regard [1–7, 96–103]. The phenolic and antioxidant compounds in different organs of plants produce strong antioxidant, antiinflammatory, antispasmodic, antiseptic, and antimicrobial effects [8–10, 96–104].

Studies have shown that the plants *Taxillus, Aristolochia, Syzygium cumini, Albizia adiantifolia, Bidens pilosa, Carica papaya, Ranunculus, Peltophorum africanum, Vachellia karroo, Rhocissus tridentate, Houttuynia cordata, Panax notoginseng, Nelumbo nucifera, Astragalus, Hypericum aethiopicum, Spondias mombin, Jatropha zeyheri, Ximenia caffra, Trichilia dregeana, Clematis brachiate, Tabernaemontana, Sarcophyton* play an important role in the treatment of parasitic and infectious diseases including STIs, genital and urinary tract infections, gastroenteritis, digestive cancer, constipation, flatulence and other genital tract diseases, sexual disorders, and cancers [86–95].

As the phytochemical and pharmaceutical investigations on the herbs mentioned in this study have indicated, they contain phenolic and antioxidant compounds and are very important for various types of parasitic diseases, microbial infections, and STIs. However, the exact mechanism of these plants remains to be elucidated [107–110]. Medicinal plants studied are important for the evaluation of antimicrobial, antifungal, and antiviral activity in infectious diseases. Therefore, various medicinal plants may produce effects through more than one specific mechanism [111–114]. The results of
Table 2: Effective material of the herbal plants.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Effective material</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxillus</td>
<td>Flavonoid, aviculin, hyperin, quercitrin and taxillusin</td>
<td>89</td>
</tr>
<tr>
<td>Aristolochia</td>
<td>Aristolochic acid</td>
<td>90</td>
</tr>
<tr>
<td>Syzygium cumini</td>
<td>Coumarin, flavonoids, glycosides, phenols, tannins, steroids</td>
<td>91</td>
</tr>
<tr>
<td>Albizia adianthifolia</td>
<td>1-methyl-β-carboline, (+)-(R)-1-methyl-1,2,3,4-tetrahydro-β-carbol ine, and (-)-(S)-1,2-dimethyl-1,2,3,4-tetrahydro-β-carbol ine</td>
<td>92</td>
</tr>
<tr>
<td>Bidens pilosa</td>
<td>Phenolics, flavonoids, quercetin</td>
<td>92</td>
</tr>
<tr>
<td>Carica papaya</td>
<td>Carotenoids, polyphenols, benzyl isothiocyanates, and benzyl glucosinates, cyanogenic substance prunasin</td>
<td>92</td>
</tr>
<tr>
<td>Ranunculus</td>
<td>Saponins, tannins, phenols, flavonoids, and alkaloids</td>
<td>92</td>
</tr>
<tr>
<td>Peltophorum africanum</td>
<td>Peltogynoid ophioglonin, 2-phenoxochromone, 3'-O-β-D-glucoside, peltogynoid ophioglonin</td>
<td>92</td>
</tr>
<tr>
<td>Vachellia karroo</td>
<td>Anthroquinones</td>
<td>93</td>
</tr>
<tr>
<td>Rhoicissus tridentate</td>
<td>Alkaloids, flavonoids, tannins</td>
<td>94</td>
</tr>
<tr>
<td>Houttuynia cordata</td>
<td>Quercetin, isoquercitrin</td>
<td>95</td>
</tr>
<tr>
<td>Panax notoginseng</td>
<td>Dammarane-type saponin, flavonoids</td>
<td>95</td>
</tr>
<tr>
<td>Nelumbo nucifera</td>
<td>Alkaloids, flavonoids, glycosides, terpenoids, steroids</td>
<td>95</td>
</tr>
<tr>
<td>Astragalus</td>
<td>Astragalosides, flavonoids, and polysaccharides</td>
<td>95</td>
</tr>
<tr>
<td>Hypericum aethiopicum</td>
<td>α-pinene, β-pinene, α-pinene</td>
<td>96</td>
</tr>
<tr>
<td>Spondias mombin</td>
<td>Quercetin, myricetin, and luteolin flavonoids</td>
<td>97</td>
</tr>
<tr>
<td>Jatropha zeyheri</td>
<td>β-pinene, 13,8-p-menthatriene, ledene, m-methane, linalyl acetate, and 3-carene. β-sitosterol, lupeol, β-sitosterol, spathulenol, β-sitostenone, γ-sitosterol, and stigmasterol</td>
<td>98</td>
</tr>
<tr>
<td>Ximenia caffra</td>
<td>Phenolic acid and flavonoids</td>
<td>99</td>
</tr>
<tr>
<td>Trichilia dregeana</td>
<td>Oleanane-type triterpene, 15-chloro-β-amyrone, was isolated from Trichilia hirta, together with the known compounds taraxer-3-one, β-taraxerol, along with two novel esters, 3-(isobutyryloxy)-2,2,4-trimethylpentyl palmitate, 3-(isobutyryloxy)-2,2,3-trimethylpentyl stearate, and the known 3-hydroxy-2,2,4-trimethylpentyl isobutyrate</td>
<td>99</td>
</tr>
<tr>
<td>Clematis brachiata</td>
<td>Triterpenoid saponins</td>
<td>99</td>
</tr>
<tr>
<td>Tabernaemontana</td>
<td>β-caryophyline (56.87%), α-cadinol (12.52%), 85,13-cedran-diol (5.41%), α-terpinol (3.99%), β-eudesmol, caryophyline oxide ethyl iso-allochololate, β-cubebene, curcumenoil, spathulenol, friedeline and β-sitosterol, alkaloids, isoakuammiline, 18-hydroxypseudovincadifformine, alkaloids, coronaridine, heyneanine, 3,19-oxidocoronaridine, tabersonine, and strictosidine</td>
<td>99</td>
</tr>
<tr>
<td>Sarcophyton</td>
<td>Flavanone glycoside, naringenin 5-glicoside. Their structures were elucidated on spectroscopic evidence as 5,7,3',4'-tetrahydroxylavanyl-7-O-beta-glucosyl-(4beta-8;2beta-O-7)-eriodietyl 5,7,3',4'-tetrahydroxyflavanyl 7-O-beta-glucosyl-(4beta-8;2beta-O-7)-naringenin, respectively</td>
<td>99</td>
</tr>
</tbody>
</table>

Phytochemical investigations have indicated that the medicinal plants have antioxidant, antimicrobial, antiviral, and antifungal properties, which may be due to the active
ingredients and active flavonoids, such as total flavonoids and phenolics, quercetin, iso-
quercitrin, Dammarane-type saponin, flavonoids, alkaloids, flavonoids, glycosides, ter-
penoids, steroids, astragalosides, flavonoids and polysaccharides, α-pinene, β-pinene,
α-pinene, quercetin, myricetin and luteolin flavonoids, β-pinene, 1,3,8-p-menthatriene,
ledene, m-menthane, linalyl acetate and 3-carene, β-sitosterol, lupeol, spathulenol, β-
sitostenone, γ-sitosterol, stigmasterol, phenolic acid and flavonoids, etc. This article
mentions some of the therapeutic and medicinal plants in traditional medicine across
the world that have antifungal and antimicrobial properties to treat STIs and genital
tract infections. The studies have been conducted to demonstrate the prevention and
treatment of genital tract bacterial diseases and STIs in humans by a number of common
therapeutic medicinal plants with antibacterial and antioxidant effects and also the
pathways in which they act; these medicinal plants may also be used to supply drugs
in complementary medicine due to the presence of antioxidant compounds, bioactive
compounds, phenols, flavonoids, etc. [86–95, 115–120].

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

Authors’ Contributions

All authors searched, studied, reviewed, and contributed to the design of the research
equally. All authors reviewed, commented and approved the final draft.

Ethical Approval

In preparation of this review article we tried to consider all ethical issues.

References

infections (STIs): coevolution of sexually antagonistic host traits with an STI. The

of sexually antagonistic host traits with a sexually transmitted infection. bioRxiv,

Examination Survey data. *Sexually Transmitted Diseases*, vol. 35, no. 9, pp. 791–796

DOI 10.18502/sjms.v14i2.4691

