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Abstract
Background: Missense variants in humans are genetic variations that lead to amino
acid substitutions in protein-coding regions, which can modify protein structure,
function, and phenotype. The Patatin-like phospholipase domain-containing protein
3 (PNPLA3) gene has received considerable attention because of its link to several
metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD) and alcoholic
liver disease (ALD).
Methods: The PNPLA3 gene was extracted from the National Center for Biotechnology
Information (NCBI) databases, and non-synonymous single-nucleotide polymorphisms
(nsSNPs) were analyzed using computational software (SIFT, Polyphen-2, SNPs&GO,
PhD-SNP, I-Mutant 3.0, MUpro, and Project Hope).
Results: A total of 108 nsSNPs were selected from the coding region forHomo sapiens.
The SIFT server was used to distinguish between tolerant and intolerant nsSNPs. A total
of 21 deleterious nsSNPs were identified, with a tolerance index ranging from 0.000
to 0.03. Polyphen-2 software predicted 19 damaging polymorphisms, with a score
range of 0.970 to 1.000. Using Mupro and I-Mutant 3.0, 18 nsSNPs were identified as
decreasing the stability of the mutated protein, while one nsSNP was found to increase
the stability of the mutated protein. According to the SNPs&GO software, six nsSNPs
were predicted to be disease-related, whereas the PhD-SNP software predicted 11
nsSNPs as disease-related. Six nsSNPs were selected for submission to the Project
Hope software based on their prediction by SNPs&GO as the most damaging, with a
score range of 0.998 to 1.000.
Conclusion: In this study, six deleterious mutations affecting the protein of the PNPLA3
gene were detected, each with a high score, as indicated by a PSIC SD range of 0.998–
1.000, implying pathological polymorphisms that alter the protein’s structure, stability,
and function. These mutations were regarded as significant nsSNPs for the PNPLA3
gene in relation to NAFLD. Computational tools have inherent limitations, including
biases from training data and challenges in modeling complex biological systems,
making experimental validation crucial for their implications and practical applications.
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1. Introduction

Non-synonymous single-nucleotide polymorphisms
(nsSNPs), also known as missense variants, rep-
resent genetic variations that lead to amino acid
substitutions within protein-coding regions of the
genome [1, 2]. These variants have been implicated
in various human diseases by altering protein
structure, function, and interactions [3]. Located
on chromosome 22q13.31, the PNPLA3 gene is a
member of the patatin-like phospholipase domain-
containing protein family. It produces a protein
involved in regulating lipid metabolism and stor-
age [4, 5]. PNPLA3 has emerged as a leading
factor in the pathogenesis of metabolic disor-
ders, particularly non-alcoholic fatty liver disease
(NAFLD) and alcoholic liver disease (ALD), making
it a prime target for genetic studies aimed at
elucidating disease mechanisms and identifying
therapeutic targets [6, 7]. The gene provides
directions for producing the adiponutrin (ADPN)
protein and calcium-independent phospholipase A2
epsilon acylglycerol. O-acyltransferase or calcium-
independent phospholipase is an enzyme found
in human fat cells (adipocytes) and liver cells
(hepatocytes) [8, 9].

NAFLD is a buildup of excess fat in the liver
that can cause liver damage, similar to the damage
from alcohol abuse, but occurring in individuals who
do not heavily consume alcohol. In some cases,
NAFLD progresses to non-alcoholic steatohepatitis
(NASH) and can result in permanent liver damage or
cirrhosis [10].

This study aimed to perform an in silico analysis
of nsSNPs in the human PNPLA3 gene to elucidate
their potential impact on protein structure, function,
and disease susceptibility.

2. Methods

2.1. Data retrieval

Using the dbSNP, information regarding SNPs of
the PNPLA3 gene was collected. Various software,
including Sorting Intolerant from Tolerant (SIFT),
PolyPhen-2, I-Mutant 3.0, MUpro, SNPs&GO, PHD-
SNPs, and Project Hope, were utilized to examine
the impact of nsSNPs on the structure and function
of the PNPLA3 protein (Figure 1).

2.2. Protein function prediction

For studying the effect of mutations on the protein
function, three software programs were used:

2.2.1. Sorting Intolerant from Tolerant
(SIFT)

SIFT is a sequence homology-based tool that
identifies intolerant from tolerant amino acid
substitutions and predicts whether an amino acid
substitution in a protein will have a phenotypic
effect. SIFT is based on the premise that protein
evolution is correlated with protein function. It
involves a multistep procedure that searches
for similar sequences, selects closely related
sequences that may share similar functions with
the query sequence, obtains the alignment of
these selected sequences, and finally calculates
normalized probabilities for all possible substitu-
tions from the alignment [11]. The input nsSNPs’
rs-IDs were submitted to the server for analysis;
positions with normalized probabilities of <0.05
were predicted to be deleterious, while those
≥0.05 were expected to be tolerated [11].
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Figure 1: Software used in the study.

2.2.2. PolyPhen-2

Polymorphism Phenotyping v-2, or PolyPhen-2,
predicts the potential impact of amino acid sub-
stitutions on the structure and function of human
proteins using simple physical and evolutionary
comparative considerations [12]. It estimates the
position-specific independent count (PSIC) for each
variant and then assesses the differences between
them. The higher the PSIC, the greater the func-
tional impact of the amino acid on protein function
may be. Prediction outcomes are categorized as
probably damaging, possibly damaging, or benign,
based on scores ranging from 0 to 1.

2.2.3. SNPs&GO

Single-nucleotide polymorphism and gene ontol-
ogy, or SNPs&GO, is an accurate method that,
starting from a protein sequence, can predict
whether a variation is disease-related or not by
exploiting the corresponding protein functional
annotation. SNPs&GO collects unique framework
information derived from protein sequences and
evolutionary information, as encoded in gene
ontology terms, outperforming other available

predictive methods [13]. The protein sequence
is submitted in FASTA format obtained from
UniproktB/ExPASY. After submitting the sequence,
the mutations are entered in the XPASY format,
where X and Y represent the wild-type and mutant
residues, respectively. The result is indicated as
neutral or disease. PHD-SNP results are included
as part of the SNPs&GO output.

2.3. Protein stability prediction

To study the effect of mutations on protein stability,
two software programs were used:

(i) I–Mutant 3.0: This software enables the
automatic prediction of changes in protein stability
resulting from single-site mutations, based solely
on the protein sequence or the available protein
structure, along with the Gibbs free energy change
(DDG) reflecting either increased or decreased
stability [14].

(ii) MUpro: This is a set of machine learning
programs designed to predict the effect of a
single-site amino acid mutation on protein stability.
It is developed using two machine learning
methods: Support vector machines (SVMs) and
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neural networks [15]. The output indicates whether
stability has increased or decreased.

2.4. Protein structure prediction

To study the effect of mutations on protein
structure, the following software was used: Project
Hope is an online web service that allows
users to submit a sequence and a mutation.
It collects structural information from various
sources, including calculations of the 3D protein
structure, sequence annotations in UniProt, and
predictions from the Reprof software. Project Hope
combines this information to analyze the impact
of a specific mutation on protein structure. The
software generates a report that includes text,
figures, and animations [16].

3. Results

The PNPLA3 gene contained a total of 110 SNPs,
with 108 in the coding region and two in the non-
coding region. According to SIFT, 21 nsSNPs were
predicted to be damaging, while 87 were predicted
as tolerated. Analysis using Polyphen-2 revealed
that two nsSNPs were benign, four were possibly
damaging, and 15 were probably damaging. Two
additional software programs, SNPs&GO and PHD-
SNPs, identified 6 and 11 nsSNPs with a disease
effect, respectively (Table 1 and Figure 2).

Overall, when using four different software
programs (SIFT, Polyphen-2, SNPs&Go, and PHD-
SNP) to study the functional and structural effects,
a total of 19 SNPs were found to have a disease
effect (Appendix 1).

Regarding the effect on protein stability, 18
nsSNPs were predicted to reduce stability when
using I-Mutant 3.0. In contrast, the MUpro software

indicated that 18 nsSNPs diminish protein stability,
while one nsSNP enhances it (Table 1).

The structural impact of the SNPs on protein
structure and function was examined using Project
Hope. Six SNPs were assessed with this software
(Appendix 2). The software compares the wild
and mutant residues, along with their size, charge,
domain, and hydrophobicity values, for the six
highest deleterious nsSNPs.

(i) rs370741805 (Gly 24 Try): The mutant residue
leads to a G→W conversion at position 24. This
mutant residue is larger than the wild-type residue,
which could cause bumps. The wild-type residue
is highly conserved. The torsion angles for this
residue are unusual. Only glycine is flexible enough
to make these torsion angles, and mutating it to
a different residue will force the local backbone
into an incorrect conformation, disrupting the local
structure [16].

(ii) rs372035117 (Gly 112 Ser): The mutant residue
leads to a G → S conversion at position 112. This
mutant residue is larger than the wild-type residue
and is situated on the protein’s surface. Its mutation
can disrupt interactions with other molecules or
parts of the protein [16].

(iii) rs738409 (Cys 144 Ile): The mutant residue is
larger than the wild-type residue, which may lead
to bumps [16].

(iv) rs370175838 (Phe159 Arg): The mutant
residue is larger than the wild-type residue, which
may lead to the formation of bumps. There is
a difference in charge between the wild-type
and mutant amino acids. The mutation introduces
a charge that could cause the repulsion of
ligands or other residues with the same charge.
The hydrophobicity of the wild-type and mutant
residues varies. Hydrophobic interactions, whether
in the core of the protein or on its surface, will be
lost [16].
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Table 1: Results from two different software programs.

Software Result

SIFT 21 deleterious and 87 tolerated

Polyphen-2 15 probably damaging, 4 possibly damaging, and 2 benign

SNPs&GO 6 disease-related and 13 neutral

PHD-SNP 11 disease-related and 8 neutral

I-Mutant 18 decrease the protein stability and 1 increase the protein stability

MUpro 18 decrease the stability of the protein and 1 increase the protein stability

Project Hope 6 nsSNPs affect the protein function

Figure 2: Results of SNPs & GO compared to PHD-SNP.

(v) rs369199264 (Pro 174 Ser): The mutant
residue leads to P→S conversion at position 174
and is smaller than the wild-type residue, which
may result in the loss of interactions. Hydrophobic
interactions, whether in the core of the protein
or on its surface, will be lost. Proline is known
for its very rigid structure, sometimes forcing
the backbone into a specific conformation. This
mutationmay convert a proline with such a function
into another residue, thereby disturbing the local
structure [16].

(vi) rs369199264 (Ser 170 Pro): The mutant
residue is larger than the wild-type residue, which
may lead to bumps. The hydrophobicity of the
wild-type andmutant residues varies. Themutation
introduces a more hydrophobic residue at this

position. This can result in a loss of hydrogen bonds
and/or disrupt proper folding [16].

4. Discussion

NAFLD is emerging as a common liver disease
associated with obesity and insulin resistance,
which can lead to type 2 diabetes and car-
diovascular disease [17]. In this study, using six
different software programs, six nsSNPs—namely
rs370741805 (Gly 24 Try), rs372035117 (Gly 112
Ser), rs738409 (Cys 144 Ile), rs370175838 (Phe 159
Arg), rs369199264 (Pro 174 Ser), and rs369199264
(Ser 170 Pro)—were identified as being related to
the disease. These results were not reported in
ClinVar.
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Studies by Luo et al. and Oh et al. reported
that rs738409 is associated with lipid metabolism,
which is the leading cause of NAFLD [18, 19].
Another study by Witzal et al. found that rs738409
causes lipolysis, leading to steatohepatitis [20].
The same mutation was identified by Färkkilä
et al. as playing a role in primary sclerosing
cholangitis (PSC), a chronic inflammatory disease
characterized by bile duct damage, cholestasis,
and biliary cirrhosis [21].

Gong et al. concluded that an rs2896019
was significantly associated with hepatocellular
carcinoma (HCC) [22]. Further replication studies
have demonstrated strong associations between
PNPLA3 and steatosis, fibrosis/cirrhosis, and HCC,
particularly in the context of metabolic, alcoholic,
and viral insults [23]. In 2008, genome-wide asso-
ciation studies (GWAS) performed in a population-
based sample, where hepatic liver fat content was
measured by magnetic resonance spectroscopy,
indicated a strong association between a vari-
ant (rs738409 C > G, p.I148M) in the patatin-
like phospholipase domain-containing 3 (PNPLA3)

gene and NAFLD [6]. Additional genome-wide
studies will be required to identify new variants
associated with liver damage. The results of this
study suggest that the deleterious and damaging
variants of the PNPLA protein, along with obesity
and alcohol intake, interact synergistically, leading
to an increased risk of cirrhosis, HCC, and liver
disease-related death. However, this research has
its limitations, as its accuracy relies heavily on the
quality and availability of biological and structural
data. Computational tools often exhibit biases
stemming from training data and struggle to model
complex biological systems, resulting in inaccurate
predictions. Additionally, the lack of high-resolution
structural information for the full-length PNPLA3
protein and the impact of non-coding mutations

must also be considered, alongside the critical
need for experimental validation through in vitro
and in vivo studies for accurate interpretation.

5. Conclusion

In conclusion, applying computational tools such as
SIFT, PolyPhen-2, SNPs & GO, PhD-SNP, iMutant-
3.0, MUpro, and Project Hope may offer an alter-
native approach for selecting target nsSNPs. It was
found that the major mutations in the native protein
of the PNPLA3 gene were six nsSNPs that had
high scores, with PSIC SD ranges (0.998–1.000),
indicating pathological polymorphism changes in
the amino acids. These mutations were predicted
to alter the protein’s structure, stability, and
functions. The physicochemical properties affected
by these nsSNPs are considered significant in
causing NAFLD and can be used as diagnostic
mutations.
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NAFLD: Non-alcoholic fatty liver disease

ALD: Alcoholic liver disease

NCBI: National Center for Biotechnology Informa-
tion

nsSNPs: Non-synonymous single-nucleotide poly-
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ADPN: Adiponutrin

NASH: Non-alcoholic steatohepatitis

SIFT: Sorting Intolerant from Tolerant

PSIC: Position-specific independent count

SVMs: Support vector machines

PSC: Primary sclerosing cholangitis

HCC: Hepatocellular carcinoma

GWAS: Genome-wide association studies

Appendix 1

Table A.1: Results of SIFT and Polyphen analysis.

SNP Amino acid
change Protein ID SIFT score SIFT prediction Polyphen-2 prediction Polyphen-2

score

rs370741805 G24W ENSP00000216180 0 Deleterious Probably damaging 1

rs141203357 G45V ENSP00000216180 0.001 Deleterious Probably damaging 1

rs201221697 G49R ENSP00000216180 0.028 Deleterious Possibly damaging 0.919

rs367826503 S74R ENSP00000397987 0.024 Deleterious Possibly damaging 0.746

rs367826503 S78I ENSP00000216180 0.025 Deleterious Probably damaging 0.994

rs200528261 R79W ENSP00000216180 0.001 Deleterious Probably damaging 1

rs200528261 R75K ENSP00000397987 0.002 Deleterious Benign 0.064

rs372035117 G112S ENSP00000216180 0.014 Deleterious Probably damaging 1

rs372035117 Q108G ENSP00000397987 0.016 Deleterious Possibly damaging 0.939

rs738409 I148M ENSP00000216180 0.003 Deleterious Probably damaging 0.994

rs738409 C144I ENSP00000397987 0.003 Deleterious Probably damaging 0.998

rs141106484 V162M ENSP00000216180 0.018 Deleterious Probably damaging 1

rs141106484 S158V ENSP00000397987 0.021 Deleterious Probably damaging 0.97

rs370175838 R163Q ENSP00000216180 0.006 Deleterious Probably damaging 0.97

rs370175838 F159R ENSP00000397987 0.006 Deleterious Probably damaging 1

rs369199264 P174S ENSP00000216180 0 Deleterious Probably damaging 1
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Table A.1: Continued.

SNP Amino acid
change Protein ID SIFT score SIFT prediction Polyphen-2 prediction Polyphen-2

score

rs369199264 S170P ENSP00000397987 0 Deleterious Probably damaging 1

rs369326583 D318H ENSP00000216180 0.01 Deleterious Probably damaging 0.565

rs369326583 D314E ENSP00000397987 0.01 Deleterious Benign 0.289

rs202021013 I316L ENSP00000397987 0.027 Deleterious Possibly damaging 0.807

rs202021013 L320F ENSP00000216180 0.03 Deleterious Probably damaging 0.976

Appendix 2

Table A.2: The effect of mutation on protein using the Project Hope prediction.

Rs Wild and mutant variation

rs370741805

G24W

rs372035117

G112S

rs738409

C144I

rs370175838

F159R
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Table A.2: Continued.

Rs Wild and mutant variation

rs369199264

P174S

rs369199264

S170P

Appendix 3

Table A.3: Results of SNPs&GO and PhD-SNP.

Rs Amino acid
change

SNPs&GO
prediction RI Probability PhD-SNP

prediction RI Probability

rs370741805 G24W Disease 4 0.696 Disease 9 0.937

rs141203357 G45V Neutral 1 0.454 Disease 6 0.8

rs201221697 G49R Neutral 0 0.487 Disease 6 0.818

rs367826503 R74S Neutral 4 0.281 Neutral 5 0.244

rs367826503 S78I Neutral 4 0.321 Neutral 1 0.464

rs200528261 R79W Neutral 1 0.475 Disease 1 0.545

rs200528261 R75K

rs372035117 G112S Disease 3 0.629 Disease 5 0.734

rs372035117 Q108G Neutral 7 0.172 Neutral 6 0.183

rs738409 I148M Neutral 4 0.305 Disease 2 0.623

rs738409 C144I Disease 5 0.739 Disease 7 0.835

rs141106484 V162M Neutral 7 0.15 Neutral 1 0.433

rs141106484 S158V Neutral 1 0.449 Neutral 0 0.494

rs370175838 R163Q Neutral 1 0.431 Disease 3 0.63

rs370175838 F159R Disease 6 0.815 Disease 7 0.836

rs369199264 P174S Disease 6 0.786 Disease 6 0.81

rs369199264 S170P Disease 7 0.851 Disease 8 0.886
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Table A.3: Continued.

Rs Amino acid
change

SNPs&GO
prediction RI Probability PhD-SNP

prediction RI Probability

rs369326583 D318H Neutral 8 0.121 Neutral 3 0.363

rs369326583 D314E

rs202021013 I316L Neutral 7 0.155 Neutral 3 0.336

rs202021013 L320F Neutral 7 0.142 Neutral 6 0.193

Appendix 4

Table A.4: Results of Software, I -Mutant, and Mupro prediction.

Protein ID Amino acid
change

I -Mutant
prediction RI DDG value

(Kcal/mol)
Mupro
prediction DDG value Confidence

score

ENSP00000216180 G24W Decrease 3 –0.19 Decrease –0.042869786 –0.65390637

ENSP00000216180 G45V Decrease 3 –0.26 Decrease –0.08962408 0.065012029

ENSP00000216180 G49R Decrease 3 –0.57 Decrease –0.23534606 0.9047314

ENSP00000397987 R74S Decrease 9 –1.46 Decrease –0.49124976 –1

ENSP00000216180 S78I Decrease 0 –0.12 Decrease –0.27140407 0.51034774

ENSP00000216180 R79W Decrease 6 –0.81 Decrease –0.8556114 0.18118445

ENSP00000397987 R75K

ENSP00000216180 G112S Decrease 9 –1.40 Decrease –0.18585132 –0.71701595

ENSP00000397987 Q108G Decrease 7 –0.99 Decrease –1.3655618 –0.68306945

ENSP00000216180 I148M Decrease 9 –1.78 Decrease –1.1283822 –0.53652383

ENSP00000397987 C144I Decrease 4 –0.19 Increase 0.080044747 –0.32486298

ENSP00000216180 V162M Decrease 9 –1.62 Decrease –0.89227391 –0.025289674

ENSP00000397987 S158V Increase 1 –0.09 Decrease –0.34796299 0.84014597

ENSP00000216180 R163Q Decrease 9 –1.45 Decrease –1.3158497 –1

ENSP00000397987 F159R Decrease 7 –1.31 Decrease –1.8097122 –0.57676089

ENSP00000216180 P174S Decrease 8 –1.66 Decrease –1.2705549 –1

ENSP00000397987 S170P Decrease 0 –0.58 Decrease –0.76082466 0.078745668

ENSP00000216180 D318H Decrease 2 –0.36 Decrease –1.3487321 –0.50383528

ENSP00000397987 D314E

ENSP00000397987 I316L Decrease 7 –1.02 Decrease –0.64031455 –0.64288551

ENSP00000216180 L320F Decrease 6 –1.14 Decrease –1.0150064 –1
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