Research Article

Variations of Arterial Supply of the Liver: C.T. Angiographic Study Among Sudanese Adults

Nidal Abubaker Harun¹, Mohamed A/Salam Nurein², Taher Osman Ali³, Tarig Gasim Mohamed Alarabi⁴, Kamal Zaki Ali⁵, Heitham Mutwakil Mohammed⁶, Asim Mohammed Abdalla⁵, Abulqasim M. B. Siddeeg⁵, Ali Gad Karim A. Salih⁵, Samy Ismail Ahmed⁶

¹University of Science and Technology, Collage of Medicine, Department of Anatomy, Omdurman-Sudan
²Albayan College for Science and Technology, Department of Anatomy, Khartoum- Sudan
³National Ribat University, Collage of Medicine, Department of Anatomy, Khartoum - Sudan
⁴Orotta College of Medicine and Health Sciences, Department Medical Sciences, Unit of Anatomy and Embryology, Asmara, Eritrea.
⁵King Khalid University, Collage of Medicine, Department of Anatomy, Abha - Kingdom of Saudi Arabia
⁶Najran University, Collage of Medicine, Department of Anatomy, Najran - Kingdom of Saudi Arabia

ORCID:
Tarig Gasim Mohamed Alarabi: https://orcid.org/0000-0002-0948-6807
Abulqasim M. B. Siddeeg: https://orcid.org/0000-0001-9315-1980
Ali Gad Karim A. Salih: https://orcid.org/0000-0002-8471-8241
Heitham Mutwakil Mohammed: https://orcid.org/0000-0002-6515-7207
Samy Ismail Ahmed: https://orcid.org/0000-0002-9790-6751
Taher Osman Ali: https://orcid.org/0000-0001-6751-1460
Nidal Abubaker Harun: https://orcid.org/0000-0003-0724-2080

Abstract

Hepatobiliary surgery through laparoscopic approach is becoming a routine. Knowledge of extrahepatic arterial tree is essential for surgical and imaging procedures. Anatomical complexity is expected since the liver is developed by merging of lobules with its separate blood supply. This makes a wide range of variations in the pattern of vascular arrangement and so reinforces the need for an accurate understanding of full spectrum of variations. This study aimed to investigate the variations in origin and distribution of extrahepatic arterial supply. Fifty volunteers (32 males and 18 females) aged 20–70 years were randomly recruited from the department of CT scan in Al Amal Hospital, Khartoum North, Sudan. The patients were already candidates for CT angiography with contrast for conditions other than hepatobiliary diseases. The reported data is related to those who accepted to participate in the study. Patients with history of hepatobiliary disease were excluded. 3D views of the scans were treated and the extrahepatic arterial tree was traced in a computer-based software. Key findings suggest that Michel's classification was considered the standard template for description – 76% of them showed Michel's type I classification. Types III and V constituted about 2%. About 4% of the cases were represented by types VI and IX. Other types of variations constituted about 12%. To conclude, although type I classification which describes the textbook pattern of hepatic artery distribution was significantly detected among the Sudanese population, other variants were to be considered since they are related to major arteries like aorta and superior mesenteric.
Keywords: hepatic artery variations, CT angiography, hepatobiliary, vascular abnormalities

1. Introduction

The study of vascular anatomical variations and its regular updates is essential for the safety practice in the modern surgery, radiology, and transplantation procedures [1]. Many types of vascular variations have been reported for the liver at both dissection laboratories and radiological imaging [2]. The extra blood vessel that supplies the liver lobes is called the accessory hepatic artery (AcH), whereas the vessel risen from an unusual origin is called the replaced hepatic artery (RpH) [3]. It is observed that the usual presentation of the hepatic arterial vasculature was the common hepatic artery which is arising from the celiac axis. The normal hepatic arterial vasculatures are presented in about 50–80% of the population [4]. The variations in the hepatic artery were first described by Michel in 1966 who classified it into 11 types [5, 6] (Table 1). Type I is the common hepatic artery which is one of the three branches of the celiac trunk. Types II, III, and IV are replaced right and left hepatic arteries arising from the superior mesenteric and left gastric arteries. Types V, VI, and VII are accessory right and left hepatic arteries arising from the superior mesenteric and left gastric arteries. Type VIII has replaced right hepatic artery in combination with accessory left hepatic or vice versa. In types IX and X, the whole hepatic artery arises from the superior mesenteric artery (SMA) or left gastric artery (LGA) [2, 3, 5, 7]. Description of a rare variation was reported in which the common hepatic artery gave a branch before the origin of the gastroduodenal artery [7]. The common hepatic artery was seen arising from the SMA according to Ozen [8]. Quadrification of the celiac trunk into splenic, left gastric, common hepatic, and inferior phrenic arteries were reported; moreover, the hepatic proper was divided inside the liver into right and left hepatic branches and to AcH that originated from the SMA [9]. Another pattern of quadrification was reported with celiac trunk divided into splenic, common hepatic, left gastric, and gastroduodenal arteries, also the proper hepatic was seen to continue as a separate right hepatic artery whereas the left branch was arising from the left gastric [10]. This study investigates the presence of new variations in the extrahepatic branches of the hepatic artery using angiographic computerized tomography with contrast among the Sudanese populations.
2. Materials and Methods

This cross-sectional descriptive study was conducted on 50 volunteers (32 male and 18 female) aged 20–70 years between September 2015 and March 2017 at Alamal National Hospital, Khartoum North, Sudan. The hospital is a referral hospital for CT angiography scanning with contrast.

The sample was collected from patients attending the CT department to be scanned using contrast for investigations other than liver angiography. A call for participation was set and all candidates who agreed to participate in the study were included in the sample. Thus, it is considered as a convenient sample. This is because it was not practical and ethical to subject the candidates to CT scanning with contrast for research only.

The announcement for the volunteers to participate in this study was boarded in the department of medical imaging. Any volunteer with a medical history of hepatobiliary disease was excluded. Consent was obtained individually from each candidate after further counselling, as well as the study was approved by the academic committee of the College of Postgraduate Studies, National Ribat University, Khartoum, Sudan. Volunteers were prepared for scanning with Omnipaque (80 ml) – an autoinjecting contrast media (non-ionic iodinated). The scan was performed using contrast and the scanner was Toshiba Aquilion™ 64 slice (Toshiba Medical Systems, Nasu, Japan) – version 3.0 software which includes Digital Imaging and Communications in Medicine (DICOM), the 3D views analysis was modulated according to the software options. Exposure to radiation was highly controlled for each volunteer.

3. Results

Out of the 50 volunteers, 48% were 60–70, 30% were 40–59, and 22% were 20–39 years old (Figure 1). In 76% of cases, the hepatic artery was emerging from the celiac trunk (Type I of Michel’s classification). The distribution of the variations types III, V, VI, and IX were 2%, 2%, 4%, and 4%, respectively. In 12% of the cases, the variations were class XI (not matching the variations of Michel’s classification from I to X) (Table 1). It was including a common hepatic artery arising as a direct branch of aorta and two hepatic arteries each originating separately (Figures 2 & 7). No significant correlation between the variation and the sex was found (P-value = 0.122).
4. Discussion

Any anatomical changes in the liver vasculature should be reported to improve the practice in the fields of laparoscopic hepatobiliary surgery, interventional radiology, and liver transplantation. This study tried to investigate the presence of variations in the hepatic artery concerning the origin and extrahepatic branching among Sudanese
Figure 3: CT angiography of Toshiba AquilionTM 64 slice (Toshiba Medical Systems, Nasu, Japan) showing Michel type I, the celiac trunk dividing into three branches – left gastric artery (LGA), common hepatic artery (CHA), and splenic artery (SA).

Figure 4: CT angiography of Toshiba AquilionTM 64 slice (Toshiba Medical Systems, Nasu, Japan) showing Michel type III replaced right hepatic artery from superior mesenteric artery + quadrification of the celiac trunk.

using CT angiography, which is why this study has classified the variations according
Figure 5: CT angiography of Toshiba AquilionTM 64 slice (Toshiba Medical Systems, Nasu, Japan) showing the LGA arising directly from the aorta.

Figure 6: CT angiography of Toshiba AquilionTM 64 slice (Toshiba Medical Systems, Nasu, Japan) showing the common hepatic artery arising from the aorta.

to Michel's categorization [7] which seems to describe the difference between the accessory and replaced hepatic arteries [11, 12]. Other studies such as Suzuki [13] used another method of classification based on the distribution of the hepatic artery at the
Figure 7: CT angiography of Toshiba Aquilion™ 64 slice (Toshiba Medical Systems, Nasu, Japan) showing double hepatic arteries – one arising from the celiac trunk (1) and the other originating as a direct branch from the aorta (2).

Table 1: Michel's classification of hepatic artery variations.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal anatomy of hepatic artery</td>
</tr>
<tr>
<td>II</td>
<td>Replaced LHA arising from LGA</td>
</tr>
<tr>
<td>III</td>
<td>Replaced RHA arising from SMA</td>
</tr>
<tr>
<td>IV</td>
<td>Replaced LHA and replaced RHA</td>
</tr>
<tr>
<td>V</td>
<td>Accessory LHA arising from LGA</td>
</tr>
<tr>
<td>VI</td>
<td>Accessory RHA arising from SMA</td>
</tr>
<tr>
<td>VII</td>
<td>Accessory LHA and RHA</td>
</tr>
<tr>
<td>VIII</td>
<td>Replaced RHA + accessory LHA/Replaced LHA + accessory RHA</td>
</tr>
<tr>
<td>IX</td>
<td>Entire hepatic trunk arising from SMA</td>
</tr>
<tr>
<td>X</td>
<td>Entire hepatic trunk arising from LGA</td>
</tr>
<tr>
<td>XI</td>
<td>For any variant not described for type I–X</td>
</tr>
</tbody>
</table>

Source: Classification by Michel (1966) [3, 5, 6].

Porta-hepatis area of the liver. Another method was modified Michel's classification with the reduction of the variation's groups from ten to five in addition to a sixth group for the variants not included [14]. Regarding the normal presentation of the hepatic artery (typically type I; Figure 3), the study results were 76%, which is in line with the study by Kamath [15] with 75% and Ozdemir [16] with 68.6%; but in contrast with the study of Saidi [17] which revealed a 95.1% for the current type. Type III was reported to be the next
common type in many studies [8, 18, 19], which disagrees with our results that describe the percentages of types III and V as the least frequent types of variations with 2% for each (Figure 4). However types VI and IX were reported as 4% each, which agrees with the Gumus study [18]. Besides, 12% of the variations in this study did not match any of the Michel’s classifications (Figures 5 & 6).

5. Conclusion

The presence of the textbook picture of the extrahepatic course of the hepatic artery should be investigated in a usual survey. Some of the variations were found to align with Michel’s classification whereas others were found to be out of the classification (type XI). Among the limited examined Sudanese volunteers, 24% were of unusual (abnormal) anatomical presentation which is alarming for a community blueprint as well as such results can build a new update for the anatomy and morphology sciences. Therefore, further research and investigations are recommended to detect the actual percentage and distribution of hepatic arterial vasculature variations as well as other anatomical variants.

Acknowledgments

The authors would like to thank the staff of the radiology department in Alamal National Hospital, with special regards to Dr Abdalrahman Mohamed Alnoor for his valuable collaboration.

Ethical Considerations

Consent was obtained from all participants.

Competing Interests

None

Availability of Data and Material

All relevant data and methodological details pertaining to this study are available to any interested researchers upon reasonable request to corresponding author.
Funding

None.

References

