Conference Paper

Capacitance Measurements System Using RC Circuit
Wisnu Djatmiko
Dept. Vocational of Electronics Engineering, Fac. of Engineering, Universitas Negeri Jakarta

Abstract
This article reports the technique of measuring capacitance using the concept of charging capacitors in the RC-series circuit. The proposed capacitance measuring system is built using 3 sub-systems: (1) Arduino M0 board (with 12-bit internal ADC) to control the process of discharging and charging capacitor voltages using the digitalWrite() function; (2) ERM20004FB-2 LCD with I2C-serial module to display measurement data; and (3) \(R_{\text{CHARGE}}C_X\)-series circuit (\(R_{\text{CHARGE}} \) is a carbon-film 89.7Mohm resistor and \(C_X \) is the capacitor to be measured). The charging time of the capacitor voltage from 0\(V_S \) to 0.5\(V_S \) (\(\Delta t \)) is calculated using the analogRead() and micros() functions. The \(C_X \) value is calculated using the equation
\[
C_X = \frac{\Delta t}{(693.1471R)nF}
\]
and with the value \(\Delta t \) displayed on the LCD module. The capacitance measuring system has been tested to measure capacitance of 14 ceramic-disk capacitors from 1nF to 100nF with an error rate < ±0.7% (compared to LCR-821). The results of the study concluded that the error rate was influenced by changes in the resistance value of \(R_{\text{CHARGE}} \).

Keywords: capacitance measurement, RC circuits, Arduino M0 application

1. Introduction
Microcontroller systems can be implemented to measure capacitance by using 3 ways: (1) using an RC or LC relaxation oscillator (\(R \) and \(L \) values are known), measuring the output frequency, and calculating capacitance using resonance frequency equations [1 – 3]; (2) using RC Monostable-MV (\(R \) value known), measure \(T_{\text{ON}} \) pulse width, and calculating capacitance using pulse width equation [4 – 5]; and (3) using a capacitor charging system in RC-series circuit with a stable DC voltage source, measuring the charging time until the capacitor voltage reaches a certain value, and calculating capacitance using the charging equation of the capacitor [6-9]. The accuracy of the capacitance measurement by measuring the charging time can be increased using Arduino M0 which has a 12-bit ADC [10].
2. Methods and Equipment

2.1. Methods

2.1.1. RC charging circuit

The RC charging circuit is realized using a DC voltage source, resistor, and capacitor connected in series as shown in Figure 1 [11]. When the switch is closed, current $i(t)$ flows from the voltage source through resistors and capacitors so that equations (1) to (3).

\[V_S = V_R + V_C \]
\[V_S = i(t)R + \frac{1}{C} \int_{t=0}^{t=\infty} i(t) \, dt \]
\[i(t) = \frac{V_S}{R} e^{-\frac{t}{RC}} \]

The capacitor voltage can be calculated using equation (4). If the values of R, V_S, and Δt (the charging time of $V_C(t) = 0.5V_S$ to V_S) is known, then capacitance can be calculated using equations (5) to (7) [11].

\[V_c(t) = V_s \left(1 - e^{-\frac{t}{RC}}\right) \]
\[e^{-\frac{t}{RC}} = \frac{V_S - V_C(t)}{V_S} \]
\[-t = RC \ln \left(\frac{V_S - 0.5V_S}{V_S}\right) \]
\[C_X = \frac{\Delta t}{0.6931471 \times R_{CHG}} \text{ Farad} \]
2.1.2. Description of the capacitance measurement system

The capacitance measuring system (Figure 2) was built using the concept of charging a capacitor C_X in an RC-series circuit that is controlled by Arduino M0 using pinMode() and digitalWrite. Before the charging cycle, the C_X voltage is emptied through $R_{\text{DISCHARGE}}$ which is connected to the ground through a digital pin 6. C_X charging cycle is done through R_{CHARGE} which is connected to a voltage of 3.3 Volts via digital pin 7. C_X charging time from $0V_S$ to $0.5V_S(\Delta t)$ is calculated using the micros() function and then the capacitance can be calculated (equation 7) and displayed to the ERM20004FB-2 LCD with I2C-serial module. The pseudo-code of the Arduino M0-based capacitance measuring system uses the concept of charging capacitors in the RC-series circuit as described below:

1. discharging C_X until $VC_X = 0$ Volts,
2. charging C_X and save time (t1),
3. stop charging when the ADC $= 2048(VC_X = 0.5V_S)$,
4. save time (t2),
5. calculate Δt and C_X using equation 7,
6. show C_X and Δt values to LCD, and
7. repeat step 1.
3. Results

$R_{\text{DISCHARGING}}$ is set at 100Ohm1% to get a fast discharge time ($t_{6RC} = 120\mu\text{Sec}$) when connected with C_x maximum (100\,nF) and R_{CHARGING} determined at 89. 7MOhm (9 resistors in series) to get Δt minimum $> 50000\mu\text{S}$ when connected to C_x minimum (1\,nF). Level data converter module (3.3Volt to 5Volt) is used to connect SDA and SCL signals from Arduino M0 to 4 × 20char LCD boards (with I2C-serial module). Capacitor measurement system has been successfully created (Figure 3, not calibrated, and has been tested to measure the capacitance of 14 ceramis-disks capacitors alternately using GWinstek LCR-821 (5 times each) and the results are shown in Table 1. Sketch of the system is created using Arduino IDE ver. 1.9.0-Beta and written in the following paragraph:
```c
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 20, 4);
byte delta[] =
{ B00000, B00000, B00000, B00100, B01010, B10001, B11111, B00000 };
unsigned long t1, t2, dt; float R, nanoF;
void setup()
{
    lcd.begin(); lcd.clear();
    lcd.setCursor(0, 0); lcd.print("CAPACITANCE METER");
    lcd.setCursor(0, 2); lcd.print("Cx : ");
    lcd.createChar(0, delta); lcd.setCursor(0, 3); lcd.write(0);
    pinMode(7, OUTPUT); digitalWrite(7, LOW);
    pinMode(8, OUTPUT); digitalWrite(8, LOW);
    delay(5000);
    analogReadResolution(12);
    R = 89.7;
}
void loop()
{
    do { pinMode(8, OUTPUT);
         digitalWrite(8, LOW);
         delay(2000);
    } while(analogRead(0) < 1);
    pinMode(8, INPUT);
    digitalWrite(7,HIGH);
    t1 = micros();
    while(analogRead(1) < 2048){} //ADC=2048 equal to 0,5V S
    t2 = micros();
    digitalWrite(7,LOW);
    dt = t2 - t1;
    nanoF = dt/(693.1471*R);
    lcd.setCursor(5, 2); lcd.print(nanoF,4);lcd.print(" nF ");
    lcd.setCursor(5, 3); lcd.print(dt); lcd.print(" uS ");
}
```

C_X measurement results (columns 2 and 4 in Table 1) are the average of 5 measurements using LCR-821 and using capacitance measuring system. The % error (column 8) value is calculated using equation (8).

$$\%\text{error} = \frac{C_X \text{system value} - C_X \text{LCR-821}}{C_X \text{LCR-821}} \times 100$$ (8)

4. Discussion

Referring to equation (7), there are 2 variables that affect the measurement results of capacitance: (1) stability of the Δt; and (2) stability of the $R_{	ext{CHARGE}}$. Because Δt is generated from the function of micros() which has a $4\mu S$ resolution [12] so that it is assumed that it does not affect the measurement results, the change in the $R_{	ext{CHARGE}}$ value will cause a change in the value of the C_X measurement. If the $R_{	ext{CHARGE}}$ value rises, then the C_X measurement value will decrease and vice versa. The average
<table>
<thead>
<tr>
<th>No.</th>
<th>capacitor (ceramics disk) value</th>
<th>measurement results</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LCR-821</td>
<td>capacitance measuring system</td>
<td>Δt(μS)</td>
<td>% measurement error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cx (nF)</td>
<td>SD</td>
<td>Cx (nF)</td>
<td>SD</td>
</tr>
<tr>
<td>1</td>
<td>102K (10nF 10%)</td>
<td>0.9208</td>
<td>0.0091</td>
<td>0.9271</td>
<td>0.0110</td>
</tr>
<tr>
<td>2</td>
<td>302M (3nF 20%)</td>
<td>3.1005</td>
<td>0.0143</td>
<td>3.0948</td>
<td>0.0509</td>
</tr>
<tr>
<td>3</td>
<td>472K (4n7F 10%)</td>
<td>4.4351</td>
<td>0.0016</td>
<td>4.4334</td>
<td>0.0859</td>
</tr>
<tr>
<td>4</td>
<td>103G (10nF 2%)</td>
<td>9.4243</td>
<td>0.0018</td>
<td>9.4108</td>
<td>0.0058</td>
</tr>
<tr>
<td>5</td>
<td>103K (10nF 10%)</td>
<td>9.7432</td>
<td>0.0068</td>
<td>9.7289</td>
<td>0.0109</td>
</tr>
<tr>
<td>6</td>
<td>153J (15nF 5%)</td>
<td>15.4270</td>
<td>0.0083</td>
<td>15.4217</td>
<td>0.0377</td>
</tr>
<tr>
<td>7</td>
<td>223K (22nF 10%)</td>
<td>20.7686</td>
<td>0.0103</td>
<td>20.6276</td>
<td>0.0392</td>
</tr>
<tr>
<td>8</td>
<td>273K (27nF 10%)</td>
<td>25.9722</td>
<td>0.0181</td>
<td>25.7965</td>
<td>0.0241</td>
</tr>
<tr>
<td>9</td>
<td>333K (33nF 10%)</td>
<td>31.9410</td>
<td>0.0113</td>
<td>31.9659</td>
<td>0.0796</td>
</tr>
<tr>
<td>10</td>
<td>473J (47nF 5%)</td>
<td>41.9192</td>
<td>0.0274</td>
<td>41.8124</td>
<td>0.1494</td>
</tr>
<tr>
<td>11</td>
<td>563K (56nF 10%)</td>
<td>52.7006</td>
<td>0.0576</td>
<td>52.6150</td>
<td>0.0948</td>
</tr>
<tr>
<td>12</td>
<td>633J (63nF 5%)</td>
<td>69.0542</td>
<td>0.1407</td>
<td>68.8577</td>
<td>0.0623</td>
</tr>
<tr>
<td>13</td>
<td>104K (100nF 10%)</td>
<td>94.3276</td>
<td>0.1942</td>
<td>94.4634</td>
<td>0.1975</td>
</tr>
<tr>
<td>14</td>
<td>104J (100nF 5%)</td>
<td>98.5234</td>
<td>0.0575</td>
<td>98.5659</td>
<td>0.2419</td>
</tr>
</tbody>
</table>

The measurement error value of RCHARGE is 89.7 MΩ with standard deviation 121 (measured 5 times using LCR-821), so it can be concluded that there is a correlation between the % error value of the measurement of the capacitance measuring system and the instability of the RCHARGE value.

5. Conclusion

An Arduino-based capacitance measuring system uses the technique of calculating the charging time of the capacitor voltage in the RC-series circuit has been successfully made to measure the capacitance of 14 ceramic-disk capacitors with a measurement error rate < ±0.7% (compared to LCR-821).

Funding

This capacitance measurement system research can be completed with research funds from the Faculty of Engineering, Universitas Negeri Jakarta (based on PPK Decree...
Acknowledgement

The researchers thanked many colleagues in the Laboratory of Instrument & Control of the Faculty of Engineering, Universitas Negeri Jakarta for their contributions and support for this research. The researcher also thanked all the reviewers who provided valuable input and helped complete this article.

Conflict of Interest

The researcher does not have a conflict of interest related to the completion of this article.

References

