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Abstract
Wilt desease of banana caused by Fusarium oxysporum f.sp. cubense (FOC) is one of
the most destructive deseases of banana in the tropics. Actinomycetes are the most
economically and biotechnologically valuable prokaryotes able to produce wide range
of bioactive secondary metabolites. The aims of the present study are to isolate and
screen the actinomycetes with high potential ability to produce secondary metabolites
that have inhibitory activity against plant pathogenic fungi, Fusarium oxysporum f. sp.
cubense. Two isolates from Lampung and Cianjur showed activity against fungi. The
isolates designed as L.3.1 and CiIA5b. The metabolites from potent stain was produced
by extraction of culture filtrate with ethyl acetate : methanol (4 : 1), it was tested for
their antifungal activity by well diffusion method. Evidence for in vitro antibiosis of
L.3.1 and CiIA5b isolates was demonstrated by the zone of fungal-growth inhibition.
Production of secondary metabolites was analysis by thin layer chromatography (TLC)
and bioautography assays. In this study, the metabolites from L.3.1 and CiIA5b have
showed good antifungal activity.

Keywords: Actinomycetes; antifungal activity; bioautography; secondary
metabolites; thin layer chromatography.

1. Introduction

Here fungal phytopathogens are the cause of many plant diseases and much loss of
crop yields, especially in subtropical and tropical regions [1]. Wilt desease of banana
caused by Fusarium oxysporum f.sp. cubense (FOC) is one of the most destructive
deseases of banana in the tropics [2]. Microorganisms are biological control agents
have high potential to control plant pathogens and no effect on the environment. There
presently exist numerous reports on potential use of biocontrol agents as replacements
of agrochemicals [3–5].
Actinomycetes are the most economically and biotechnologically valuable prokary-

otes able to produce wide range of bioactive secondary metabolites, such as antibi-
otics, antitumor agents, immunosuppressive agents and enzymes. These metabolites
are known to posses antibacterial, antifungal, neuritogenic, anticancer, antialgal,
antimalarial and anti-inflammatory activities [6]. Around 23 000 bioactive secondary
metabolites produced bymicroorganisms have been reported and over 10 000 of these
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compounds are produced by Actinomycetes, representing 45% of all bioactive micro-
bial metabolites discovered [7]. Among Actinomycetes, around 7 600 compounds are
produced by Streptomyces species. Many of these secondary metabolites are potent
antibiotics, which has made Streptomyces the primary antibiotic producing organisms
exploited by the pharmaceutical industry [8–10]. Most Actinomycetes in soils belong
to the genus Streptomyces [11] and 60% of the sources of most biologically active
compounds that have been developed for agricultural use are originated from them [3].
Streptomyces, as the most important genus of Actinomycetes, are the most abundant
soil microorganisms under a wide variety of conditions. This genus was confirmed to
promising bacteria against several pathogens and is well known for their potential
to produce a large number of inhibitory metabolites used in industry and pharmacy
[12, 13].
Streptomyces are found in plant rhizosphere [3] and attention has been paid to

the possibility that they can protect roots by inhibiting the development of potential
fungal pathogens. This may be achieved through by the production of enzymes, which
degrade the fungal cell wall, or antifungal compounds [14–16].
Secondary metabolism usually occurs at the late growth phase. The temporal nature

of secondary metabolism is genetic but expression can be influenced greatly by envi-
ronmental manipulations. Therefore, secondary metabolism is often brought on by
exhaustion of a nutrient, or addition of an inducer and/or by a decrease in growth
rate, or by different environmental signals produced by other organisms in soil e.g
𝛾-butyrolactonens produced by most Streptomyces and by other Actinomycetes [17].
The bioautography is one of the techniques useful in direct tracing out bioactive

compounds from extracts on thin layer chromatogram [18]. Antifungal bioautographic
assays system have used clasically one-dimensional thin layer chromatography (TLC)
to separate the chemical constituent from the extract. Antifungal metabolites can be
readily located on the plates by visually observing clear zones where active compound
inhibit fungal growth.
Hence, the objectives of this study are to isolate Actinomycetes from soils and

screen secondary metabolites that have inhibitory activity against plant pathogenic
fungi.

2. Materials and Methods

2.1. Isolation of Actinomycetes

Soil samples were obtained from the rhizosphere of banana plantation in Lampung and
Cianjur, West Java. The five g of soil were suspended in 45 mL aquadest in the Erlen-
meyer flask. Erlenmeyer flasks were incubated on a rotary shaker [(125 rpm) (1 rpm
= 1/60 Hz)] at room temperature for 30 min. Actinomycetes were isolated by spread
plate technique following the serial dilution of soil samples. Following incubation at
28∘C for 4 d, isolated colonies were subcultured on International Streptomyces Project
(ISP) agar medium until pure cultures were obtained.
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2.2. Extraction of secondary metabolites of Actinomycetes

L.3.1 and CiIA5b isolates were inoculated in 2.5 L of International Streptomyces Project
medium, pH 7.0 and incubated at 28∘C with shaking for 4 d. Each liquid culture was
extracted with ethyl acetate : methanol (4 : 1). The organic extracts were concentrated
by rotary evaporation and dissolved in methanol. The concentrated products were
regarded as crude samples and kept at −20∘C. The antifungal activity of the crude
samples was checked.

2.3. Screening of antifungal activity

Fusarium oxysporum f. sp. cubense was cultured on potato dextrose agar (PDA), incu-
bated at 28∘C for 4 d. Mycelia discs of 0.6 cm diameter of this fungal pathogen was
transferred from PDA onto the center of PDA plates. The inhibition of fungal growth
was observed by agar well diffusion method. The 100 𝜇L of L.3.1 and CiIA5b extracts
were transferred on the the plate, 3 cm away from the fungal discs. The plates were
incubated at 28∘C for 4 d. The 100 𝜇L of methanol were placed on the plates, 3 cm
away from the fungal discs as a negative control.

2.4. Thin Layer Chromatography (TLC)

The 10 𝜇L of each extract were blotted on a Silica Gel 60 F264 (Merck) used for TLC. TLC
plates were developed with dichloromethane : methanol (9 : 1) and the extract spot
was allowed to develop of the plates. TLC plates were the removed from the solvent
chamber immediately before the solvent reached the top of the plates. Each plates
was allowed to develop until the solvent reached 1 cm from the top and then placed
it in an UV viewing cabinet (254 nm) [18], and buthanol : acetic acid : water (4 : 1 : 5)
described by Hemashenpagam [19] then visualized by UV light. Retention factors (Rf)
were calculated.

2.5. The Bioautography

Inhibition of fungal growth on chromatographic plates was evaluated by TLC bioautog-
raphy system. The chromatogram was kept for evaporation of the solvent. Developed
chromatogramwas placed on sterile potato dextrose agar. Potato dextrose agar with a
spore suspension was poured on chromatogram. Zone of inhibition was checked after
incubation [20].

3. Result and Discussion

Two isolates were selected from the rhizosphere of banana plantation. The isolates
designed as L.3.1 and CiIA5b. The rhizosphere represents a unique biological niche that
supports an abundance of diverse saprophytic microorganisms due to a high input of
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Figure 1: Extract of culture filtrate of L.3.1 and CiIA5b.

Figure 2: Antifungal activity of L.3.1 against Fusarium oxysporum f.sp. cubense (FOC).

organic material from plant roots and root exudates [3]. All isolates were screened for
their ability to produce antifungal compound.
The culture filtrate of L.3.1 and CiIA5b isolates were extracted with ethyl acetate

: methanol (4 : 1) for extracting secondary metabolites that have inhibitory activ-
ity against plant pathogenic fungi, Fusarium oxysporum f. sp. cubense (FOC). Different
plants species and varieties might produce different types of root exudates, which
could support the activity of microorganisms for antifungal production [3, 21]. It is
possible that that excretions from the roots of Musa sp. might induce Actinomycetes
that show antifungal activity.
The results indicated that L.3.1 and CiIA5b release an extra diffusible metabolite that

inhibit hyphal growth of Fusarium oxysporum f. sp. cubense (see Figure 1). The antago-
nistic potential, involving the production of antifungal compounds of Actinomycetes
isolated from plant rhizosphere soils to pathogenic fungi, involving the production
antifungal compound has been reported [22].
Fungal cell walls often contain chitin as major component, and are suscepticable

to chitinases [23]. Antagonistic activity of several Streptomyces spp. against a number
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Figure 3: Antifungal activity of CiIA5b against Fusarium oxysporum f.sp. cubense (FOC).

Figure 4: Antagonistic effects of metabolites of L.3.1 and CiIA5b on FOC by agar well diffusion method.

of fungal pathogenic species has been known for a long time [24]. The purified chiti-
nase lysed the mycelium and inhibited spore germination of F. oxysporum. In previous
studies, it was noted that some microorganisms which inhibited pathogens on agar
also did so in soil, whereas those ineffective on agar were also ineffective in soil [25].
L.3.1 and CiIA5b were selected for biocontrol agents-the ability to produce extracellular
metabolites actives against several phytopathogenic fungi, including FOC. The antag-
onism between Actinomycetes and the pathogen may have involved production of
secondary metabolites in agar [22].
Culture of L.3.1 (see Figure 2) and CiIA5b (see Figure 3) in liquid media produced

extracellular metabolites that showed clear zones of inhibition against FOC. In agar well
diffusion method the crude extract of L.3.1 and CiIA5b showed good against Fusarium
oxysporum f. sp. cubense. The crude extract has the ability to inhibit growth of FOC.
Morphology of phytopathogenic fungi (see Figure 4) was changed, the growth was

very slow and the mycelium was destroyed. In their crude form, these metabolites
inhibited spora germination and hyphal development of FOC, and induced morpholog-
ical changes such as swollen [26].
The ethyl acetate extract of L.3.1 and CiIA5b (see Figure 5) were fractionated using

silica gel Thin Layer Chromatography (TLC) to identify the active metabolites with
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Figure 5: TLC analysis of ethyl acetate extract of L.3.1 and Ci.IA5b.

Isolates Rf values

S1 S2

L.3.1 0.286 0.786

CiIA5b — 0.786

T 1: Results for TLC.

antifungal activity. Each extract produced two and one spot when the chromatogram
was visualized under UV lamp at 254 nm. One spot of CiIA5b has Rf values 0.786. Two
spots of L.3.1 have Rf values 0.286 and 0.786.
Bioautography of the extract of L.3.1 and CiIA5b tested against FOC (see Figure 6),

confirmed the antifungal activity of specific fraction of TLC. Inhibition of FOC growth
was detected as white spot indicated the presence of antifungal compound. The frac-
tion F2 was identified to have antifungal activity against FOC, where clear white spot
of inhibited area was observed in contrast to black colored growth of FOC.
Bioautography technique was very useful for detection of antifungal compound of

ethyl acetate extract on thin layer chromatograms. Bioautography methods use in this
study was found to be most simple, rapid and efficient method for direct tracking of
antifungal fraction from the crude extract [27]. Antifungal metabolites can be readily
located on the plates by visually observing cear zones where active compounds inhibit
fungal growth.

4. Conclusion

The present study reported the activities of secondary metabolites by Actinomycetes
strain against Fusarium oxysporum f.sp. cubense (FOC). This is indicated that secondary
metabolites of Actinomycetes have antifungal activity. The bioautography assay show
that this isolates can produces antifungal compound. Therefore, this isolates proves to
be a promising isolates which can be further studied for its applications a biocontrol
agent against plant pathogenic fungi.
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Figure 6: Bioautography of ethyl acetate extract of L.3.1 against Fusarium oxysporum f.sp. cubense (FOC).

Further investigaton is needed to optimization of this isolate’s antifungal activity,
purification and structure of the active compounds to scale up the production
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