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Abstract
The present study involves the assessment of four metals (Cr, Pb, Cu, and Mn) and
their mobility (primary and dynamic translocation and bioconcentration factors)
in Ricinus communis and Calotropis procera growing in tannery contaminated soil
(TCS) and control soil (CS). The area is moderately to strongly contaminated with
Cr. Except for Cr, all the analyzed metals were found within the critical range in
TCS and in both plants. The assessment of both primary and dynamic translocation
and bioconcentration factors showed TF < 1 and BCF > 1 for both plants, which
demonstrates the major transfer and accumulation of Cr from soil to root. As these
plants are not grazed upon by grazing animals, the ecological metal transfer risks
from these plants are quite low. Moreover, the high commercial importance of these
plants (biofuel production and medicinal value) further enhances their utilization for
the phytostabilization of moderately Cr-contaminated sites.

Keywords: chromium, Ricinus communis, Calotropis procera, dynamic factors, tannery
industry

1. Introduction

Population explosion and rapid urbanization have resulted in the establishment of
different industries and introduced the problem of heavy metal pollution, which has
raised critical concerns about human health and the ecosystem. Among all the indus-
tries, the chrome tanning industry is one of the most potent, carcinogenic and toxic
industries. It is remunerative and used in many part of the world to make high-quality
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products (leather) [1]. However, the direct discharge of their untreated, heavy-metal-
loaded effluent (especially Cr VI) into the environment is matter of concern: concen-
trations as low as 0.5 mg/kg in solution and 5 mg/kg in soil can be toxic to plants [2].
Heavymetals are toxic, non-degradable and persist in the environment for a long time,
which produces adverse effects on human health and other living biota.

Plants growing in and around tannery contaminated soil (TCS) accumulate significant
concentrations of heavy metals such as chromium (Cr), lead (Pb), copper (Cu) and
manganese (Mn) in their tissues. Cr (VI) is highly toxic for plants and causes DNA and
membrane damage and the inhibition of seed germination, root tip cell division and
photosynthesis [3]. Prolonged intake of Cr via plants, vegetables and crops has long
been considered the predominant pathway for human exposure, which leads to the
contamination of the environment and food chain and causesmany diseases, disorders
and cancer [1, 4].

Phytoremediation is an eco-friendly, cost-effective and resource-generating tech-
nology that is gaining attention across the world as a means for using tannery contam-
inated fallow and agricultural lands for resource generation [1]. Ricinus communis and
Calotropis procera are two potentially important plant species that have been found to
be suitable for bioenergy/biofuel production: they also havemedicinal and commercial
value. The present research primarily investigates the status of the heavy metal con-
tamination of TCS. Secondly, the metals’ mobility and uptake by two plants species (R.
communis and C. procera) was also evaluated using primary and dynamic translocation
factors in order to check the potential of phytoremediation.

For many years, researchers studying phytoremediation have mainly evaluated the
primary factors of plant-soil interaction in one place simultaneously under similar envi-
ronmental conditions. However, the rate of the transportation of heavy metals is influ-
enced by physiological factors like plant age, ecotype and environmental conditions
(i.e., the nature of the substrate, the form and type of the available metals, climatic
conditions etc.). Kumar and Maiti [5] used the concept of dynamic factors (i.e., sec-
ondary factors) to integrate the influence of site-level factors and the physiological and
ecological conditions during the bioaccumulation and translocation of metals in Oryza

sativa and Zea mays growing in chromite-asbestos contaminated agriculture fields of
Jharkhand, India. This study confirms that dynamic factors are better for assessing
heavy metals in contaminated soil and plants. To the best of our knowledge, very
little research has been done on dynamic factors (BCF & TF) in relation to these plant
species.
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2. Methods

Many illegal leather tanning industries active from long period of time on the out-
skirts of Meerut, Sobhapur village (29∘05” N, 77∘39’2” E), Rhota road, Bypass Meerut,
Uttar Pradesh, India, discharging millions of gallons of toxic effluent into nearby water
bodies and land sites. Despite high levels of Cr contamination, R. communis and C.

procera were found to be the plants that were most dominant and possessed the
most biomass: growing luxuriantly without showing any toxic morphological effects,
samples of these plants were collected along with soil. The soil samples (each with 5
replicates) were air dried, mixed thoroughly, passed through a <2 mm sieve, and oven
dried at 105 ∘C. The pH (1:1; w/v) and electrical conductivity (1:1; w/v) were determined
by a digital pH meter and an electrical conductivity meter, respectively. Organic carbon
(OC) was determined by the rapid dichromate oxidation method [6], the available
nitrogen (Avl. N) as alkaline permanganate method [7], and the available phosphorus
(Avl. P) as phosphomolybdenum blue calorimetric method using a double beam UV-
Visible scanning spectrophotometer [8]: the available potassium (K) was extracted by
a 1N ammonium acetate solution at pH 7 (1:10; w/v) using a flame photometer (AFP-
100) [1]. Accurately weighed, 1 g of soil sample was dissolved using 10 mL of nitric
acid (HNO3), followed by 0.5 mL of H2O2: these samples were then filtered through a
Whatman#42 [5]. The samples were diluted and analyzed using an atomic absorption
spectrophotometer (AAS, Hitachi Z-2000 Zeeman,).

The plant samples were washed several times to remove the adhered soil particles
and oven dried at 80 ∘C until a constant weight was achieved. The plants were divided
into root and shoot, homogenized using a mortar-pestle and passed through a < 40
BSS (British standard) mesh: 1 g was dissolved in 10 mL of HNO3 and heated on a hot
plate for complete dissolution. The samples were filtered and analyzed using an AAS.

The primary bioconcentration factor (BCFpri) is the ratio of metal concentration in
the plant (root + shoot) to the metal concentration in the soil [1], while the primary
translocation factor (TFpri) is the ratio of metal in the shoot to the metal in the root.
The dynamic bioconcentration factor (BCFdyn) is the ratio of metal concentration in the
plant and soil growing in TCS to the metal concentration in the plant and soil growing
in CS. The dynamic translocation factor (TFdyn) is the ratio of metal transfer from root
to shoot in plants growing in TCS to the ratio of metal transfer from root to shoot in
plants growing in CS [5]. The detection limits for Cr, Pb, Cu and Mn were 0.005, 0.002,
0.01 and 0.02 mg/L, respectively. The mean, minimum, maximum, standard deviation
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and one way ANOVAwere calculated using the SPSS 20.0 Inc. Chicago, USA and XLSTAT
2007 packages.

3. Results

The chemical, nutritional properties and heavy metal concentration in TCS and CS are
presented in Table 1. The pH was found to be slightly alkaline for TCS, whereas it was
neutral for CS. The EC, OC, Avl. N, Avl. P, Avl. K and heavymetals were found to bemuch
higher in TCS compared to CS. The continuous mixing of untreated tannery effluent
could be the reason for this contamination.

T˔˕˟˘ 1: The chemical and nutritional characteristics and heavy metal concentrations (mg/kg) of tannery
contaminated soil and control soil, (Mean ± SD (Min–Max); n = 5).

Parameters Tannery Contaminated Soil (TCS) Control Soil (CS)

R. communis C. procera R. communis C. procera

Nutritional parameters (mg/kg)

Avl. N 147.16 ± 28.97a
(104.5 – 170.0)

141.3 ± 14.06a
(120.00 – 159.00)

72.80 ± 2.37b
(70.90 – 76.40)

71.00 ± 4.53b
(66.00 – 76.00)

Avl. P 46.70 ± 6.62a
(38.00 – 53.00)

45.00 ± 9.21a
(32.00 – 58.00)

15.18 ± 4.50b
(11.00 – 22.45)

12.04 ± 1.41b
(10.00 – 14.00)

Avl. K 133.03 ± 3.33a
(128.28 – 137.50)

130.22 ± 2.35ab
(127.68 – 134.00)

130.00 ± 3.80ab
(125.00 – 135.00)

127.00 ± 5.43b
(120.00 – 135.00)

Heavy metals (mg/kg)

Cr 163.41 ± 37.31a
(103.89 – 199.35)

159.01 ± 26.76a
(115.69 – 186.23)

43.43 ± 4.11b
(38.27 – 49.25)

42.41 ± 3.71b
(38.95 – 48.26)

Pb 21.00 ± 1.59a
(19.00 – 23.00)

20.01 ± 2.71a
(16.00 – 23.00)

15.01 ± 2.80b
(11.12 – 18.06)

14.89 ± 3.42b
(10.56 – 19.62)

Cu 41.86 ± 8.27a
(28.32 – 49.00)

39.70 ± 2.19a
(36.95 – 42.56)

20.08 ± 4.85b
(14.53 – 26.12)

19.69 ± 6.41b
(11.12 – 26.55)

Mn 200.02 ± 27.45a
(165.12 – 239.26)

199.04 ± 24.06a
(166.88 – 231.56)

170.29 ± 23.64a
(140.00 – 199.56)

169.45 ± 30.33a
(120.12 – 198.13)

Source: Authors’ own work.

Note: Avl. N: available nitrogen; Avl. P: available phosphorus; Avl. K: available potassium.

The heavy metal concentrations in TCSs ranged between 104–200 mg Cr/kg, 16–
23 mg Pb/kg, 28–49 mg Cu/kg, and 165–239 mg Mn/kg. In addition, Avl. NPK (104–
170, 32–58, 125–137 mg/kg) and OC (11–12%) were sufficient to enhance plant growth
[9]. In TCS, only the Cr concentration was found to be above the critical total metal
concentration in the soil. Metal accumulation in both plants was found in the order Mn
> Cr > Cu > Pb (Table 2). The concentration of Cr in R. communis (303.83 mg/kg) and
C. procera (258.89 mg/kg) growing in TCS was above the critical limits [10]. For all the
metals, the average concentration in the whole plants was much higher in R. communis
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than in C. procera. Similar patterns were followed by both plants growing in CS, with
low metal concentrations [11, 12].

T˔˕˟˘ 2: Heavymetal concentrations (mg/kg) in the shoots and roots of R. communis and C. procera growing
in tannery contaminated soil (TCS) and control soil (CS) (Mean ± SD (Min – Max); n = 5).

Soil Metal Plant Part R. communis C. procera

Mean ± SD Min – Max Mean ± SD Min – Max

TCS Cr Shoot
Root

108.99 ± 2.95
194.84 ± 2.70

105.59 – 112.90
190.49 – 197.72

85.93 ± 1.46
172.96 ± 0.87

83.91 – 87.85
171.73 – 174.20

Pb Shoot
Root

11.92 ± 0.90
13.49 ± 1.27

10.65 – 13.19
11.56 – 14.76

11.56 ± 1.08
12.13 ± 1.05

9.99 – 12.90
10.84 – 13.18

Cu Shoot
Root

31.59 ± 1.80
25.36 ± 2.69

29.31 – 34.12
21.22 – 28.28

29.02 ± 1.57
23.00 ± 1.86

27.64 – 31.69
20.83 – 25.68

Mn Shoot
Root

144.81 ± 8.80
115.16 ± 6.15

133.66 – 156.69
109.69 – 122.66

142.66 ± 7.89
113.25 ± 1.73

130.66 – 150.66
111.19 – 115.59

CS Cr Shoot
Root

21.16 ± 2.94
36.77 ± 1.29

18.65 – 25.69
35.36 – 38.65

19.31 ± 2.95
32.66 ± 1.96

15.63 – 21.66
31.09 – 36.12

Pb Shoot
Root

7.89 ± 1.08
10.96 ± 0.87

6.23 – 9.12
9.98 – 12.06

5.50 ± 0.57
12.60 ± 0.63

4.87 – 6.10
11.95 – 13.44

Cu Shoot
Root

14.97 ± 2.17
9.75 ± 0.96

12.36 – 17.86
8.62 – 11.00

14.80 ± 0.49
9.44 ± 0.83

13.95 – 15.23
8.42 – 10.65

Mn Shoot
Root

120.05 ± 2.04
61.96 ± 2.24

117.99 – 122.91
59.11 – 64.49

119.64 ± 1.70
59.63 ± 1.53

117.86 – 121.95
57.78 – 61.56

Source: Authors’ own work.

In both plants, significantly higher concentrations of Cr and Pb were observed in the
roots than in the shoots. For Cr, this might be due to the fact that the complexation of
metals with the sulphydryl group (-SH) of soil constituents resulted in less translocation
of heavy metals to the upper parts of the plants [13], since they are immobilized in the
root vacuoles [1]. Similarly, Pb binds to the carboxylic acid group of mucilage uronic
acids on the root’s surface and remains stored in the root [14]. Higher accumulations
of Cu and Mn were observed in the shoots than in the roots for both plants, which
may be because of the different metal transporters present in plants, which can easily
translocate Cu and Mn from the roots to the aerial parts via the plasma membrane and
tonoplast [15].

The primary and dynamic translocation (TF) and bioconcentration (BCF) factors for
Cr, Pb, Cu and Mn are presented in Table 3. In both plants, the TFpri for Cr and Pb was
found to be low (< 1), which indicates a reduction in the translocation to the shoot
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parts. This may be due to a lack of carriers for the transportation of Cr and Pb in the
plants [5]. However, the TFpri was found to be > 1 for Mn and Cu because of its high
mobility toward aerial parts, which support metabolic activities and are beneficial for
plant growth. When dynamic factors are used for evaluation, the TFdyn was < 1 for Cr,
Cu and Mn, whereas values were higher in R. communis than in C. procera. The TF(𝑑𝑦𝑛)for
Pb was > 1 in both plants: this result was the opposite for the other metals (C. procera
> R. communis).

T˔˕˟˘ 3: The primary (pri) and dynamic (dyn) translocation (TF) and bioconcentration factors (BCF) of
heavy metals in R. communis and C. procera growing in tannery contaminated soil (TCS) and control soil
(CS).

TCS CS TCS CS

TF(pri) > 1 Mn1.25 > Cu1.24 Mn1.93 > Cu1.53 Cu1.26 > Mn1.25 Mn2.00 > Cu1.56
TF (pri) < 1 Pb0.88 > Cr0.55 Pb0.71 > Cr0.60 Pb0.95 > Cr0.49 Cr0.59 > Pb0.43
TF (dyn) > 1 Pb1.22 – Pb2.18 –

TF (dyn) < 1 Cr0.92 > Cu0.81 >
Mn0.64

– Cr0.84 > Cu0.80 >
Mn0.62

–

BCF(pri) > 1 Cr1.85 > Cu1.36 >
Mn1.29 > Pb1.21

Cr1.35 > Pb1.25 >
Cu1.23 > Mn1.06

Cr1.62 > Cu1.31 >
Mn1.28 > Pb1.18

Cu1.23 > Cr1.22 >
Pb1.21 > Mn1.05

BCF (pri) < 1 – −− –

BCF (dyn) > 1 Cr1.37 > Mn1.21 >
Cu1.10

– Cr1.32 > Mn1.21 >
Cu1.06

–

BCF (dyn) < 1 Pb0.96 Pb0.97
Source: Authors’ own work.

The primary BCF was found to be > 1 for all the metals, which shows the metal-
accumulating ability of both plants. However, the BCF(𝑑𝑦𝑛)value (which shows the over-
all metal transfer from TCS to CS and the plant) were high (BCF(𝑑𝑦𝑛)> 1) for all metals
except for Pb. Their order was: Cr >Mn > Cu. This suggests heavy metal contamination
of the soil and its subsequent accumulation in both naturally growing plant species.
However, a low BCF(𝑑𝑦𝑛)(< 1) for Pb indicates its lower bioavailability than the other
metals in both plants. Comparison between the primary and dynamic factors revealed
that primary factors can easily be influenced by environmental changes (contaminated
and reference soil) and may show diversity in metal uptake and mobility. So, it was
insufficient to determine the exact metal concentration in soil and its bioaccumulation
and transfer pattern in plants [5]. While dynamic factors were insensitive to envi-
ronmental changes because they incorporate the influence of environment on metal
uptake (i.e., external factors), they demonstrate the translocation process in plants
growing in the contaminated and control sites (i.e., internal factors), which eliminates
systematic errors of analysis and improves the precision of the result. It can be prelimi-
narily stated that high metal contamination of soil may adversely affect the protective
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barrier functions in plants with changes in the metal accumulation pattern, resulting in
a high uptake of heavy metals in the studied plants. Similar findings regarding heavy
metal accumulation and translocation were reported by Nagaraju and Guru [16] in C.

procera and by Ananthi et.al. in R. communis [17].

4. Conclusion

The current study concludes that TCS was strongly contaminated with Cr. The accu-
mulation of metals in the whole plant was observed in the order of Mn > Cr > Cu
> Pb, which was higher in R. communis than in C. procera growing naturally in TCS.
Assessment of the TFdyn and BCFdyn factors proved that the translocation of Cr from
root to shoot was low (< 1), whereas its accumulation in both plants was higher (>
1) than for the other associated metals. The dynamic factors used for the evaluation
of heavy metal toxicity in TCS and selected plant species (R. communis and C. procera)
further confirm and justify the primary factor results. As these plants are not grazed
upon by grazing animals, the ecological metal transfer risks from these plants are
quite low. The high commercial importance of these plants for biofuel production and
their medicinal value further enhances the probability that they can be used for the
phytostabilization of moderately Cr contaminated sites. In addition, the present study
provides a better assessment of metal toxicity in the soil and plants: dynamic factors
can be implemented for any metal contaminated sites.
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