CYTOTOXIC EFFECT OF AQUADEST, ETHANOLIC, AND CHLOROFORM EXTRACTS OF Spathoglottis plicata Blume ON BREAST CANCER CELLS LINE (T47D CELLS)

Mukhlish Jamal Musa Holle¹,²,⁎, Hestri Dyah Puspitasari¹,², Andaru Satryo¹,², Wahyu Dewi Astuti Ningrum¹,², Digdo Sudigyo¹, and Ardaning Nuriliani¹

¹ Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara Yogyakarta, 55281, Indonesia.
² Biology Orchid Study Club, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara Yogyakarta, 55281, Indonesia.
⁎ Correspondence author: holle.mukhlish@gmail.com

ABSTRACT

Breast cancer is one of cancer with high mortality. This cancer not only attacks women, but also men. Indonesia has many plants which potential as anticancer, such as orchids. Spathoglottis plicata is one of the orchid species that abundant in Indonesia and has a lot of antioxidant compounds which is guessed have anticancer properties. The objectives of this study were to study the cytotoxic activity and IC₅₀ value of aquadest, ethanolic, and chloroform extracts of S. plicata's pseudobulbs, leaves, and whole plants on T47D cells (breast cancer cells line) as well as cytotoxic activity of the specific fraction of the most toxic crude extract. S. plicata used in this study was obtained from Bungarinte nursery. Extractions were done by maceration method using aquadest, ethanol, and chloroform as the solvent. Cytotoxic test on T47D cells were done by MTT assay. The cytotoxic data were analyzed using one-way ANOVA followed by Tukey’s HSD test. The IC₅₀ of each extracts were calculate by probit analysis. The lowest IC₅₀ value among all extracts was fractionated and isolated by preparative TLC. The cytotoxic activity and IC₅₀ of this fractions were analyzed. The results showed that only 2 from 9 crude extracts that able to calculate its IC₅₀ because those two extracts have concentration dependent pattern of inhibition concentration. Chloroform extract have the lowest IC₅₀ value (369.837 µg/mL). Then, this extract fractionated by eluen n-hexane : ethyl acetate 4:1. Four fractions were collected. The lowest IC₅₀ value is fraction IV (144.41 µg/mL). Based on the results it could be concluded that S. plicata leaves have moderate potency to develop as anticancet agents, especially on breast cancer.

Keywords: S. plicata, T47D cells, cytotoxic, MTT assay, preparative TLC.

INTRODUCTION

Breast cancer is one of cancer with high mortality. This cancer becomes the second killer cancer in the World and sixth in Indonesia (Histopaedianto et al., 2008). Late of diagnosis and treatment usually caused the death of sufferer. Breast cancer attacks both women and men. So far, the treatment to cure breast cancer is not completely safe and have side effects because this treatment not only attack cancer cells but also normal cells such as hair cells, bone marrow, and gastrointestinal cells (Rahmawati, 2009). It important to investigate new herbal medicine which potential as anticancer agents especially for breast cancer treatment.

Indonesia is a megabiodiversity country, especially for orchids biodiversity. Approximately, 5.000 of 25.000 orchid species in the world were found in Indonesia (Sandra, 2004). Sp. plicata have a high distribution and abundant enough in a lot of area in Indonesia (Sheehan, 1994). This orchid easy to cultivate and can grow in the many different habitat. So far, this orchid just utilized as ornamental plant.

ISSN 2413-0877 © 2015 The Authors.
Published by KnowledgeE Publishing Services This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)
Selection and Peer-review under responsibility of the 3rd ICBS-2013
Doi http://dx.doi.org/10.18502/kl.s.v2i1.118
Previous study by Holle (2012), showed that *S. plicata* pseudobulbs and leaves have secondary metabolites such as alkaloid, flavonoid, and terpenoid. It has similar detected secondary metabolites with *Dendrobium* orchid which was already tested its anticancer potency through cytotoxic test on the HeLa cells (cervical cancer cell lines) (Nuriliani, 2013). Besides that, orchids are already used as medicine, such as diuretic, anti-rheumatic, anti-inflammatory, anticarcinogenic, hypoglycemic activities, antimicrobial, anticonvulsive, relaxation, neuroprotective, and antivirus (Gutiérrez et al., 2010). The other orchid species such as *Cephalancoropsis gracilis* crude methanol extract of rhizomes showed significant cytotoxicity against human breast carcinoma (MCF-7), lung carcinoma (NCI-H460), and central nervous system carcinoma (SF-268) cell lines (Wu et al., 2006). *Odontoglossum* sp. was tested by MTT method and have potency to kill cancer cells (Masuda, 2011). Based on those researchs, it is guessed that *S. plicata* also have potency as anticancer agents. The objectives of this study were to investigate cytotoxic activity of *S. plicata*’s pseudobulbs, leaves, and wholeplant extracts to the T47D cells, to analyze IC50 values of these extracts, and to determine cytotoxic activity of fraction of the most toxic extracts of *S. plicata*.

MATERIALS AND METHODS

Plant Material and extraction

S. plicata was collected from Bungarinte Nursery, Yogyakarta in mature conditions. *S. plicata* were divides on 3 samples, ie pseudobulbs, leaves, and wholeplants. The dried samples were grinded to the powder. Extractions were done by maseration method using ethanol 96%, chloroform and aquadest independently.

Cytotoxic Assay by MTT method (Ratnawati et al., 2008)

Cytotoxic activity measured by MTT assay. T47D cell line is collected from Integrated Research and Testing Laboratory (LPPT) UGM. T47D cells cultured in complex medium (87.5% RPMI + 10% FBS + 0.5% Fungizon + 0.5% Penstrep) inside Flask. After confluent, cells harvested and counted by haemocytometer. Each well on 96 platewell is filled by 2x10^4 cells/100 µL/well on complete medium. 96 platewell incubated at 37°C, CO2 5% for 4 hours. Treatment is performed in triplicate. There were 4 variable that assessed, consist of cells control (T47D cells suspensionin complete medium), Solvent control (T47D cells suspension + complete medium + DMSO 0,125%; 0,25%; 0,5%), Treatment group (Each extract by concentration 7,815; 15,625; 31,25; 62,5; 125; 250; 500 and 1,000 µg/mL on each 100µL/well) and positive control (Doxorubicin at concentration 3,906; 7,815; 15,625; and 31,25 µg/mL). After treat the cells, 96 plate well incubated on 37°C, CO2 5% during 24 hours. In the end of incubation, every well added 10 µL MTT and incubated on 37°C, CO2 5 % during 4 hours. Stopper reagent, SDS 10% in HCl 0,1 N as much as 100 µL/well, stop MTT reaction. Then, Platewell assessed by **ELISA reader** (550 nm). Inhibition percentage calculated by below formula:

\[
\text{% Inhibition} = \frac{(\text{Cells control abs. } - \text{ treatment abs.})}{\text{Cells control abs.}} \times 100\%
\]

(Ratnawati, 2008)
Fractionation by Preparative Thin Layer Chromatography (PTLC)

The extract which have the lowest IC50 value was fractionated and scraped out by preparative TLC method using eluent n-hexane:ethyl acetate 4:1. Obtained fractions from TLCP were tested for cytotoxic activity by MTT assay.

Data analysis

The different among treatments were analyzed by ANOVA followed by Tukey HSD test. IC50 (Inhibition Concentration 50) was calculated using probit analysis. The higher activity of extracts was determined by their lower IC50 value.

RESULTS AND DISCUSSION

Cytotoxic activity of S. plicata crude extracts

T47D cells are typically breast cancer cells which get missense mutation on 194 residue on p53 gene and caused this gene dysfunction. This gene dysfunction makes cell regulation fail (Da'i et al., 2007). Cytotoxic activity was able measured on the dependent concentration pattern of inhibition percentage. Two of nine crude extracts able to measure this cytotoxic activity, ie chloroform leaves extract and chloroform wholeplants extract. Cell growth inhibition treatment groups of S. plicata extracts, solvent control (DMSO and tween), and positive control (Doxorubicin) were showed in Figure 1. Solvent controls used to make sure that the DMSO and tween have no killing effects to the cells. Inhibition percentage of solvent controls almost zero so it does not affect T47D cells viability.

IC50 (Inhibition Concentration 50) is a concentration that can kill 50% of cells in cell populations. The lower IC50 value, the higher potency of extract to inhibit cell growth. IC50 values of chloroform leaves extract was (369,837 µg/mL) and chloroform wholeplants extract (1312.767 µg/mL). Based on like-dissolve-like principle, chemical that potential as anticancer compounds in both of these extracts have non-polar properties. Leaves extract have higher cytotoxic activity than wholeplants because leaves are specified organ that synthesized chemical compound such as secondary metabolite.

Fig. 1. Inhibition percentage of S. Plicata's extracts on the T47D cells. Abbreviation: CLE: Chloroform leaves extracts; CWE: Chloroform wholeplants extracts; DMSO: Dimethyl sulfoxide; TWE: Tween 20; and DOXO: Doxorubicin.
S. plicata’s leaves were contained secondary metabolites, ie alkaloid flavonoid and terpenoid (Holle et al, 2013). Alkaloid compounds on Acronychia baueri Schott, Camptotheca acuminata, Catharanthus roseus, Uncaria tomentosa, and Viscum album were reported have antitumor activity (Agarwal et al., 2012). Total alkaloid of Tabebuia rosea extract have antiproliferative potency on MOLT-4 cells (Sathiya & Muthuchelian, 2010). Flavonoid on Glycyrrhiza inflata have potency to develop as chemotherapy agents on cervix cancer treatment because it can inhibit cancer cells growth and apoptosis induction by isoliquiritigenin and chalcone A (Xia et al., 2013). Flavonoid also have potency on inhibition of carcinogen metabolic inhibition, antiproliferation, apoptosis induction, antioxidants activity, and angiogenesis inhibition (Ren et al., 2003; Kanadaswami et al., 2005). Terpenoid, such as monoterpene, diterpene, triterpene, tetraterpene, and sesquiterpene, have potency as chemotherapeutic and therapeutic agents to the liver cancer (Thoppil & Bishayee, 2011).

Cytotoxic activity potency were divided to 3 groups, ie weak (IC_{50} e” 50 µg/mL), moderate (10 µg/mL< IC_{50} < 50 µg/mL), and active (IC_{50} d” 10 µg/mL). It possible that S. plicata’s leaves extract has better cell growth inhibition on different kind of cells cultures (Syarifah et al., 2011).

Cytotoxic activity of chloroform leaves extract fraction

On TLC using eluent n-hexane:ethyl acetate 4:1 was produce 4 fraction with Rf value 97,14; 41,90; 20,95; and 10,47 respectively (Table 1). It show that this fraction is the source of toxicity of S. plicata chloroform leaves extract.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Rf (-)</th>
<th>IC_{50}(µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>97,14</td>
<td>1169,37</td>
</tr>
<tr>
<td>II</td>
<td>41,90</td>
<td>305,64</td>
</tr>
<tr>
<td>III</td>
<td>20,95</td>
<td>182,02</td>
</tr>
<tr>
<td>IV</td>
<td>10,47</td>
<td>144,41</td>
</tr>
</tbody>
</table>

The inhibition percentage (%) of treatment groups fraction of S. plicata chloroform leaves extract, solvent control (tween), and positive control (Doxorubicin) showed in Figure 1. Solvent controls used to check the effect of solvent and the results were compared with the cytotoxicity of treatments. The results indicated that solvent control (tween) did not show any significant effect on human cancer cell lines. Inhibition percentage of solvent controls almost zero so it does not affect T47D cells viability.

The results (Figure 2.) showed that fraction IV have higher cytotoxic than all fractions. IC_{50} values of fraction IV is 144,41 µg/mL. Fraction IV of chloroform leaves extract have higher cytotoxic activity than crude extract of chloroform leaves extract. Purified fraction using PTLC were reported have more effective and higher cytotoxic activity to the cancer cells than crude extract (Sampath & Vasanthi, 2013; Shriram et al., 2010).
CONCLUSION

S. plicata extracts have a cytotoxic activity to T47D cell, especially on chloroform leaves extract and chloroform wholeplants extract. IC$_{50}$ value of chloroform leaves extract more potential as anticancer agents. Fractions of chloroform leaves extract also have higher cytotoxic activity than crude extract with the moderate anticancer activity on breast cancer and need to be investigated further.

ACKNOWLEDGMENT

We acknowledge to Directorate of Higher Education Ministry of Education through Student Creativity Program as financial funding.

REFERENCES

Figure 2. Inhibition percentage of chloroform leaves extract fractions of *S. plicata* on the T47D cells. Abbreviation: DOXO: Doxorubicin and TWE : Tween 20.

