PERFORMA (PAPER TEST KIT FORMALIN) AS THE ALTERNATIVE SELECTION TO IMPROVE THE QUALITY OF FOOD INGREDIENTS

Citra Dewi Anggraini*, Susiana, Putri Yurida Sari, Randi Dwi Anggriawan, Muhamad Firdaus

Faculty of Fisheries and Marine Science University of Brawijaya, Malang
*e-mail: citraanggraini58@gmail.com

ABSTRACT

Research on "PERFORMA" or Paper Test Kits Formalin is as an alternative to improve the quality of food selection. It is aiming to get a paper test kit that can detect formaldehyde contented in foodstuffs practically, fast, easy, and inexpensive. The method used in this study is an experimental method which is part of a quantitative method that aims to manipulate and control variables. The data collection is based on the research and the observation of the color change on the paper test kit is generated from Schiff reagent test, in which the paper test kit will give a purple color response when tested on foodstuffs containing formalin. Based on the analysis of variety of data, it is obtained and expressed as mean ± standard deviation with confidence interval in this study are stated at α 5%. Thus, this research paper expects that formalin test kit can be easily applied and used by the community at large.

Keywords: foodstuff, formalin, paper test kits, reagents Schiff

INTRODUCTION

Foodstuffs are a product that is needed by humans to survive. Foodstuffs should be high in nutrients to support human health. However, the essential perishable foodstuffs are classified as material (easily broken). It is caused by microorganisms consisting in food, either from the food itself or contaminants. Because food is perishable, it needs effort in processing or preservation techniques using preservation techniques. One example of food preservation is using chemical compounds. It is inevitable that people nowadays are currently using formaldehyde as food preservation. Meanwhile, a compound to preserve the food that they used is cadaver formalin (for corpse). Formalin is not classified as a food additive, so that it should not be used in food. Food such as tofu, noodles, meatballs, chicken, fish and sweets are containing formaldehyde which will cause health problems. Formalin can react quickly to the mucus lining the digestive tract and the respiratory tract. But, chronic effects of foods that contain formaldehyde could feel in a few years later (Hastuti 2010).

So far, there has been a tool for detecting the formaldehyde contained in foodstuffs, such as Schiff reagent. However, the use of detection devices is still quite complicated for people in general because the shape Schiff reagent solution will turn into purple reaction with aldehydes. So this test requires certain conditions (laboratory) because they have to be mixed with reagents one another. Besides testing using the reagents is quite time consuming and the prices that is unaffordable by the community.
PROBLEM FORMULATION

Foodstuffs have characteristics of perishable. Thus, we need to preserve as an effort to overcome this problem. There are two kinds of preservations: natural and synthetic. Formalin is a synthetic preserver which is widely misused by people to preserve the food. In fact, formaldehyde is carcinogenic if it is consumed continuously in a long term. Hence, it should not be contained in the food. Reagen Schiff is one of the aldehyde reagents. The usage of this reagent in the formalin test is used as simply as used in the form of paper test kit.

RESEARCH OBJECTIVES

To get the paper test kit formaldehyde content in foodstuffs practical, fast, easy and inexpensive.

EXPECTED OUTCOMES

Expected outcomes of this research are:

1. To get the paper formalin test detection kit that can be applied easily by people in general.
2. To get an official patent for the paper test kit formaldehyde in foodstuffs.

THE ADVANTAGES OF THE RESEARCH

1. For students, they are supposed to be able to get a paper test kit for detecting the formaldehyde content in foodstuffs practical.
2. For the people in general, they are supposed to use paper test kit easily at an affordable price.
3. For the Government, they are supposed to tackle the rampant abuse of the use of formalin as a preservation of food.

LITERATURE REVIEW

1. Food Ingredients

In Indonesia, there are a lot of damaging food from agricultural products (including livestock and fisheries) before it is consumed. Data shows that there are about 35-40% damaging vegetables and fruits and cannot be used. Similarly, milk, eggs, meat, fish, tubers as well as fishing, and other agricultural products which can be utilized but in some parts and the rest is wasted. In such circumstances, it is commonly happened for food because it is easily damaged (perishable food). Without any further processing, the food will change over time due to the influence of physiological, mechanical, chemical, microbiological which can cause further damage and cannot be consumed (Lopez 2009).

Foodstuffs or food which is safe for consumers can be viewed from the aspect of nutrition (nutrition) and contamination (contamination). In terms of nutrition, nutritional content of food should not lack or excess which can cause a variety of diseases such as malnutrition and protein energy deficiency (PEM), iron deficiency anemia (ABG), a result of iodine deficiency disorders.
(GAKI), and degenerative diseases (i.e. heart, Diabetes Mellitus, cancer, etc.). ‘Safety using’ here means free from physical contamination, intrinsic and extrinsic form of natural toxic and anti-nutritional substances in food, biological contaminants, microbiological, chemical, heavy metals and other contaminants that could interfere with, harmful, and harmful for human health (Anwar 1991).

2. Preservation Techniques

 Preservation principles can be explained into various food preservation techniques that can be grouped naturally, biologically, and chemically. Those three techniques have the same function that is to slow the growth of microorganisms in food (as antimicrobial) and to reduce and prevent the oxidation process. Natural preservation techniques are done by setting the temperature, moisture content, and air flow, for instance: cooking, refrigeration, freezing, drying, and canning. Biological preservation such as fermentation, not only extends the storing, but also increases the nutritional value of food. Finally, the chemical preservation is generally using Food Additives (BTM) (Winarno 1992).

 Principally, further processing or preservation of food (food preservatives) is classified into the lengthy time food storage before the usage. For food which is going to be prepared or consumed instantly, it should be let in a fresh and living conditions. If it is not possible, be cleaned and then packaged and stored in a refrigerator. To use it for a longer period, it is necessary to reduce the decay caused by microorganisms (Arpah 2001).

3. Formalin Detector

 One of the reagents that can be used to detect formalin is Schiff reagent. The type of formalin detection with Schiff’s reagent is using quantitative methods. However, this method is less effective because the slightest concentrations of formaldehyde should not be presented in foodstuffs.

 Schiff reagent is a Fuchsin dye that changes color when sulfur oxide is passed into. If there is a bit of an aldehyde, the color will turn in a bright-purplish-red. Schiff reagent is made by basic fuchsin containing parafuchsin (triamino-triphenyl-methane-chloride) with sulfuric acid which then gives the color when it is reacted with an aldehyde in the cells or tissues (Nganro 2009).

 Schiff reagent is made by 1 gram crystalline sodium disulfide plus 1 ml of HCl plus 0.1 grams Fuchsin, then it is dissolved in distilled water to 100 ml. If the purple color is obtained, it showed positive presence of formaldehyde (Dolaria and Andayani 2012).

MATERIALS AND METHOD

 Model or approach used in this study is experimental, a part of quantitative method. It is aimed at manipulating and controlling variables.

1. Research Design

 It is done experimentally. The design of the research is using the difference in the formalin concentration and Schiff reagent concentration.
2. The study sample
 The sample of this study is food (fish and tofu) containing formaldehyde.

3. Research Variables
 The variables in this study are as follows:
 a. Independent Variable
 Independent variable in this study is the Schiff reagent concentration.
 b. Dependent Variable
 The dependent variable in this study is the change of reagents to the presence of formaldehyde in food.

4. Research Mechanism

![Diagram]

Manufacturing the Schiff reagent

Making Paper Formalin Test Kit

PERFORMA testing into foodstuffs containing formalin

5. Data Collection Techniques
 Data was collected based on the research.

6. Data Analysis
 Data analysis in this study using variance data analysis obtained, which is expressed as mean ± standard deviation with confidence interval, in this study is stated at α 5%.

7. Inference and Interpretation of The Research Results
 From the research has been done, it is got an interpretation of the results: the test kit will respond a purple color when it tested on foodstuffs containing formalin.

THE IMPLEMENTATION OF THE RESEARCH

1. Time and Place of Implementation Research
 Time : February 23rd to June 28th 2013
 Setting : Laboratory of Microbiology, Faculty of Fisheries and Marine Sciences, Brawijaya University.

2. Instruments
 The tools and materials used in this study is divided into several stages: (a) For the implementation of Schiff reagent manufacturing and paper manufacturing test kit are: 250 ml (2), 500 ml (2), and 1000 ml (2) of glass beaker; glass measuring 100 ml (3); pipette 10 ml volume (4); serological pipettes; spoons horn (4); petri dishes (32); spatula (4); suction ball (4); digital scales (1); oven (1); tray (6); digital camera (1); scissors (2); ruler (2); and lab coats (2), (b) The ingredients include: 10 g crystal sodium disulfite; 37% HCl; distilled water; fuchsin; fine filter paper (4 sheets); 1 pack gloves; 1 pack masks, plastic, yarn, scrap paper, and aluminum
foil (4 rolls), (c) tools and materials used for recording the research are 4 pack of pens; log book; scrap paper; ruler; and four markers, (d) tools and materials used in the packaging and exploration of cooperation are: PERFORMA paper; aluminum foil; laptop; flash drive (2); and CD-RW (1).

RESULTS AND DISCUSSION

1. Manufacturing the Schiff reagent

Manufacturing the Schiff reagent begins with weighing crystals as much as 1 gram of sodium disulfide which are then inserted into the glass beaker. Then, 2 N HCl was added with as much as 1 ml. After that, add 0.1 grams fuchsin. Then dissolved it with distilled water to 100 ml. Mix the chemicals and homogenize it using a spatula until evenly distributed. To remove Pears color, the Schiff reagent which has been let for 24 hours before was fortified into the filter paper.

2. Process of making Paper Formalin Test Kit

Prepare filter paper cut to a size of 4 x 4 cm. Then, prepare Schiff reagent and then put it in a petri dish. Then fortify the Schiff reagent into the filter paper with a smooth immersion in a petri dish, which contains Schiff reagent, for ± 15 minutes. After that, put a paper which contains Schiff reagent on a petri dish and dry it for 24 hours at room temperature. Finally, the paper formalin test kit is successfully produced (PERFORMA).

3. PERFORMA testing into Foodstuffs Containing Formalin

Prepare Paper formalin test kits and the samples (consisting of fish and tofu). Do the dilution of 37% formalin solution to 18.5%, 9.25%, 4.62%, 2.31%, 1.16% and 0.58%. Fish and tofu are soaked in different concentrations of formaldehyde for 20 minutes and allow let it for 15 minutes. After that, test the food (tofu and fish) which is containing formaldehyde (tofu and fish in fresh state) by using the Paper Formalin Test Kit (PERFORMA). Then, observe the changes of the color in paper test kit. The changes of purple color on the paper test kit shows the positive samples contained formaldehyde. On the other hand, if the color of paper test doesn't change, then the samples showed negative contamination of formaldehyde.

Fish and tofu that contain 37% formaldehyde detected by PERFORMA which is indicated by the changing of color from white paper bones become dark purple. It is followed by fish and tofu which contained 18.5% formalin, PERFORMA detected it by generating rather dark purple color. It also happened to the fish and tofu that contain formaldehyde as much as 9.25% and 4.62%, PERFORMA detected by producing brighter purple than before. Until the concentration of formalin gained 2.31%, 1.16% and 0.58%, PERFORMA detected its presence by producing the colors: mauve, purple fades, the purple and white.

This study has conducted 3 times repetitions. Repetition is done to ensure the correctness of the formalin test in foodstuffs done by PERFORMA. It also aims to create a pattern of PERFORMA, a standard used to match colors when PERFORMA successfully detect the presence of formalin in food, and shows the concentration of formaldehyde contained in the food.
4. Packaging PERFORMA

The packaging product is done by using aluminum foil packaging materials. 20 sheets of Papers Formalin Test Kit (4x4 cm size) were prepared with steps how to use the product PERFORMANCE. The items are put in aluminum foil, 5 sheets each, and 1 sheet for the steps. Then, seal the aluminum foil hermetically, to show that the products are protected from oxygen, sunlight, moisture, contamination of microorganisms, and other environmental contaminants. After the sealing process, the product that has been packed was affixed by PERFORMA logo on the front and Pattern of PERFORMA on the back.

CONCLUSIONS

From the results of the implementation of manufacturing research PERFORMA (Paper Formalin Test Kit), it can be concluded that until the end of June 2013, it has been achieved 92% of the steps listed above. It means that the research that begins by manufacturing of Schiff reagent, the fortification of Schiff reagent into filter paper, making paper kit formalin test, and testing PERFORMA in food (fish and tofu) containing formaldehyde, has been successfully carried out until the end. Thus, the implementation of the study has reached the target: producing the PERFORMA, making pattern of PERFORMA, the packaging of PERFORMA, and cooperating with partners is a form of sustainability research. In addition, besides the steps mentioned, researchers are also completing the product to publish to the public and scientific publications through journals.

Through the studies that have been carried out, it can be concluded that PERFORMA can detect formaldehyde contained in foodstuffs by characterizing the color changes from white to purple bone. The process of formalin dilution has 6 times, from 37% to 18.5%, 9.25%, 4.62%, 2.31%, 1.16% and 0.58%. Fish and tofu contain formaldehyde concentration are detected by the color change from white PERFORMA bones become dark purple, dark purple rather, brighter than the previous purple, mauve, purple faded, the white and purple. PERFORMA can detect up to 0.58% formaldehyde. It indicates that PERFORMA can detect formaldehyde contained in foodstuffs as small as possible. PERFORMA can be used as an alternative to improve the quality of food, which means that it can prevent the consumption of foodstuffs containing formalin.

To make the sustainable research based on food safety, it is important to support the research required the participation of food safety experts, educators, students and the community in the implementation of the use of paper formalin test kit continuously. It also needs the role of the government, especially the Ministry of Health to provide more attention to the sustainability of this study. In addition, to support the truth (validity) of PERFORMA, it is important to do the further research.
REFERENCES
Dolaria, Nanin, Fairdiana A. 2012. *How to Quickly Detect Formalin In Fishery Products*. Product Processing Research Center for Maritime Affairs and Fisheries, and Biotechnology
Hastuti S. 2010. *Qualitative and Quantitative Analysis of Formaldehyde on Salted Fish in Madura*. Bangkalan Faculty of Agriculture: University Trunojoyo
Lubis NDA. 2009. *Preserving Food Safely*. Field: the University of North Sumatra