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Abstract
This study was based on the dynamics of a nonlinear Bertrand-type duopoly game with
differentiated goods, linear demand and a cost function that included emissions costs.
This duopoly game was modeled with a system of two difference equations. Existence
and stability of equilibria of this system were studied. It was shown that the model gave
more complex chaotic and unpredictable trajectories as a consequence of changes in
the speed of adjustment parameter and horizontal product differentiation parameter.
Numerical simulations showed that a higher value of the speed of adjustment and a
higher or lower (negative) value of product differentiation (weaker or fiercer competition)
can destabilize the economy. The chaotic features were justified numerically via
computing Lyapunov numbers and sensitive dependence on initial conditions. Also, it
was shown that in this case of a duopoly game, there were stable trajectories, and a
higher (lower) degree of product differentiation did not tend to destabilize the economy.

Keywords: Bertrand duopoly game, discrete dynamical system, heterogeneous
expectations, stability, chaotic behavior

1. Introduction

Joseph Louis Francois Bertrand, the French mathematician in 1883 modified Cournot’s
game suggesting that the players (sellers) actually choose prices rather the quantities.
Bertrand model originally is based on the premise that all players take decisions by
naïve way, so that in every step, each player assumes the last values were taken by
the competitors without an estimation of their future reactions. However, under the
conditions of real market, such an assumption is very unlikely since not all players
share naïve beliefs. Different approaches to firm behavior were proposed. Some of the
authors considered duopolies under homogeneous expectations and found a variety of
complex dynamics in their games, such as appearance of strange attractors (Agiza 1999;
Agiza et al. 2002; Agliari et al. 2005, 2006; Bischi and Kopel 2001; Kopel 1996; Puu
1998, 2005; Sarafopoulos 2015a,b; Zhang et al. 2009). Also, models with heterogeneous
agents were studied (Agiza and Elsadany 2003, 2004; Agiza et al. 2002; Den Haan
2001; Hommes 2006; Fanti and Gori 2012; Gao 2009; Sarafopoulos and Papadopoulos
2017, 2019, 2020; Tramontana 2010; Zhang et al. 2007; Wu et al. 2010).
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In real market, producers do not know the entire demand function, though it is
possible that they have a perfect knowledge of technology, represented by the cost
function. Here it is more likely that firms employ some local estimate of the demand. This
issue has been previously analyzed (Baumol and Quandt 1964; Singh Vives 1984; Puu
1991, 1995; Westerhoff 2006; Naimzada and Ricchiuti 2008; Askar 2013, 2014). Bounded
rational players (sellers) update their strategies based on discrete time periods and by
using a local estimate of the marginal profit. With such local adjustment mechanism, the
players are not requested to have a complete knowledge of the demand and the cost
functions (Agiza and Elsadany 2004; Elsadany and Awad 2016; Naimzada and Sbragia
2006; Zhang et al. 2007; Askar 2014).

The present paper is a partial approach to our main ongoing research objective,
which is the emergence of complexity in various oligopoly models as well as its control.
In this study the dynamics of a Bertrand-type duopoly game with differentiated goods
where each firm behaves with heterogeneous expectation strategies using cost func-
tions that contain emission costs are studied. It is shown that the model gives more
complex chaotic and unpredictable trajectories as a consequence of change in the
bounded rational player’s speed of adjustment and the parameter of horizontal product
differentiation. The paper is organized as follows: Section 2 includes the construction
of this game (subsection 2.1) exporting the discrete dynamical system in which the
dynamical analysis based on. Also, in the same section (subsection 2.2) the dynamics
of the duopoly game with heterogeneous expectations, linear demand and cost func-
tion including emission costs (Sarafopoulos and Papadopoulos 2017) are developed
proving the equilibrium points’ existence and local stability. In subsections 2.2.3 and
2.2.4 the complexity of game’s discrete dynamical system are revealed via computing
Lyapunov numbers, strange attractors and sensitive dependence on initial conditions
using numerical simulations for specific values of the game’s parameters.

2. The game

2.1. The construction of the game

In this paper heterogeneous players are considered and more specifically, it is con-
sidered that the Firm 1 chooses the price of its product in a rational way, following an
adjustment mechanism (bounded rational player), while the Firm 2 decides with naïve
way by selecting a price that maximizes its output (naïve player). A simple Bertrand-type
duopoly market is assumed, where firms (players) produce differentiated goods and
offer them at discrete-time periods on a common market. Price decisions are taken at
discrete time periods t = 0, 1, 2,… At each period t, every firmmust form an expectation of
the rival’s strategy in the next time period in order to determine the corresponding profit-
maximizing prices for period t+1. It supposed that q1, q2 are the production quantities of
each firm. Also, the hypothesis that the preferences of consumers represented by the
following equation is used:

𝑈 (𝑞1, 𝑞2) = 𝛼 (𝑞1 + 𝑞2) −
1
2 (𝑞

2
1 + 𝑞22 + 2𝑑 ⋅ 𝑞1𝑞2) (1)
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where the positive parameter α > 0 expresses the market size and the parameter 𝑑 ∈
(−1, 1) reveals the differentiation degree between two players’ products. For example,
if d = 0, then both products are independent and each firm participates in a monopoly
market. When the parameter d takes the maximum positive value and d = 1, then each
product is a substitute product for the other, since the products are homogeneous. It
is understood that for positive values of the parameter d the larger the value, the less
diversification there is between two products. On the other hand, negative values of
the parameter d describe that the both products are complementary and when this
parameter takes the minimum negative value and d = - 1, then the phenomenon of full
competition between the two companies is appeared. The inverse demand functions (as
functions of quantities) coming from the maximizing of Eq.(1) are given by the following
equations:

𝑝1 (𝑞1, 𝑞2) = 𝛼 − 𝑞1 − 𝑑 ⋅ 𝑞2 and 𝑝2 (𝑞1, 𝑞2) = 𝛼 − 𝑞2 − 𝑑 ⋅ 𝑞1 (2)

Calculating the direct demand functions (as functions of prices p1 and p2) it gives the
equations:

𝑞1 (𝑝1, 𝑝2) =
𝛼 (1 − 𝑑) − 𝑝1 + 𝑑 ⋅ 𝑝2

1 − 𝑑2 (3)

and

𝑞2 (𝑝1, 𝑝2) =
𝛼 (1 − 𝑑) − 𝑝2 + 𝑑 ⋅ 𝑝1

1 − 𝑑2 (4)

It is supposed the following linear cost function for each i firm (i = 1,2):

𝐶𝑖 (𝑞𝑖) = 𝐶𝑝𝑖 + 𝐶𝑒𝑖 (5)

where

𝐶𝑝𝑖 (𝑞𝑖) = 𝑐 ⋅ 𝑞𝑖 (6)

is the clear linear production cost for each firm using the same marginal production cost
c > 0 and:

𝐶𝑒𝑖 (𝑞𝑖) = 𝑝𝑐 ⋅ 𝜖 ⋅ 𝑞𝑖 (7)

are the costs due to the fumes emissions of the production process, where 𝑝𝑐 is the
price of emission license that is announced by the Government, 𝜖 ∈ [0, 1] is the common
nonnegative coefficient for two firms and multiplying with the payers’ productions is
gives the total emissions.

With the above assumptions the profit functions of two firms are calculated as follows:

Π1 (𝑝1, 𝑝2) =
(𝑝1 − 𝑐 − 𝑝𝑐 ⋅ 𝜖) [𝛼 (1 − 𝑑) − 𝑝1 + 𝑑 ⋅ 𝑝2]

1 − 𝑑2 (8)

and

Π2 (𝑝1, 𝑝2) =
(𝑝2 − 𝑐 − 𝑝𝑐 ⋅ 𝜖) [𝛼 (1 − 𝑑) − 𝑝2 + 𝑑 ⋅ 𝑝1]

1 − 𝑑2 (9)
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As a result the marginal profits for two players are given by the equations:

𝜕Π1
𝜕𝑝1

= 1
1 − 𝑑2 ⋅ [𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 − 2𝑝1 + 𝑑 ⋅ 𝑝2] (10)

and

𝜕Π2
𝜕𝑝2

= 1
1 − 𝑑2 ⋅ [𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 − 2𝑝2 + 𝑑 ⋅ 𝑝1] (11)

The final stage to construct the game’s discrete dynamical system contain the require-
ment of the players expectations, where as mentioned above the first firm is charac-
terized as bounded rational player who decides to increase his level of adaptation in
a mechanism if he has a positive marginal profit, or decrease his level if the marginal
profit is negative. According to the existing literature this mechanism described by the
following dynamical equation:

𝑝1 (𝑡 + 1) − 𝑝1 (𝑡)
𝑝1 (𝑡)

= 𝑘 ⋅ 𝜕Π1
𝜕𝑝1

(12)

where the positive parameter k > 0, expresses the speed of adjustment of first firm and
it gives the extent p1 price variation of the firm following a given profit signal. Moreover
it captures the fact that relative variations of the price are proportional to the marginal
profit. On the other hand, the second firm decides by a naïve way, selecting this p2 price
that maximizes its profits (naïve player):

𝜕Π2
𝜕𝑝2

= 0 ⇒ 𝑝2 (𝑡 + 1) = 𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 + 𝑑 ⋅ 𝑝1 (𝑡)
2 (13)

The game’s dynamical system for these two players is described by:

⎧⎪
⎨
⎪⎩

𝑝1 (𝑡 + 1) = 𝑝1 (𝑡) + 𝑘 ⋅ 𝑝1 (𝑡) ⋅
𝜕Π1
𝜕𝑝1

𝑝2 (𝑡 + 1) = 𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 + 𝑑 ⋅ 𝑝1 (𝑡)
2

(14)

This study focuses on the dynamics of this system of Eq(14) with respect to the
parameters k and d.

2.2. Dynamical analysis

2.2.1. The equilibriums of the game

The equilibrium positions of the dynamical system Eq.(14) are resulted by the nonneg-
ative solutions of the algebraic system:

⎧⎪
⎨
⎪⎩

𝑘 ⋅ 𝑝∗1 ⋅
1

1 − 𝑑2 ⋅ [𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 − 2𝑝∗1 + 𝑑 ⋅ 𝑝∗2] = 0

𝑝∗2 =
𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 + 𝑑 ⋅ 𝑝∗1

2

(15)

which obtained by setting 𝑝1 (𝑡 + 1) = 𝑝1 (𝑡) = 𝑝∗1 and 𝑝2 (𝑡 + 1) = 𝑝2 (𝑡) = 𝑝∗2 in Eq. (14).
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If 𝑝∗1 = 0 , then 𝑝∗2 = 𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖
2 and these are the coordinates of the

boundary equilibrium:

𝐸0 = (0,
𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖

2 ) (16)

If
𝜕Π1
𝜕𝑝1

= 𝜕Π2
𝜕𝑝2

= 0, then the system is formed:

⎧⎪
⎨
⎪⎩

𝑝∗1 =
𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 + 𝑑 ⋅ 𝑝∗2

2
𝑝∗2 =

𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 + 𝑑 ⋅ 𝑝∗1
2

(17)

The previous system’s solutions are:

𝑝∗1 = 𝑝∗2 =
𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖

2 − 𝑑
giving the game’s Nash equilibrium:

𝐸∗ = (
𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖

2 − 𝑑 , 𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖
2 − 𝑑 ) (18)

2.2.2. Stability of equilibriums

The study of the local stability of the equilibrium is based on the localization on the
complex plane of the eigenvalues of the Jacobian matrix of the dimensional map
(Eq.(14)). In order to study the local stability of equilibrium points of the model (14),
the Jacobian matrix 𝐽 (𝑝1, 𝑝2) along the variable strategy (𝑝1, 𝑝2) is considered:

𝐽 (𝑝1, 𝑝2) =
⎡
⎢
⎢
⎣

𝑓𝑝1 𝑓𝑝2
𝑔𝑝1 𝑔𝑝2

⎤
⎥
⎥
⎦

(19)

Where

𝑓 (𝑝1, 𝑝2) = 𝑝1 + 𝑘 ⋅ 𝑝1 ⋅
𝜕�1
𝜕𝑝1

𝑔 (𝑝1, 𝑝2) =
𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 + 𝑑 ⋅ 𝑝1

2

(20)

The Jacobian matrix is:

𝐽 (𝑝1, 𝑝2) =
⎡
⎢
⎢
⎢⎣

1 + 𝑘
1 − 𝑑2 ⋅ [𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 − 4𝑝1 + 𝑑 ⋅ 𝑝2]

𝑘 ⋅ 𝑑 ⋅ 𝑝1
1 − 𝑑2

𝑑
2 0

⎤
⎥
⎥
⎥⎦

(21)

At the equilibrium 𝐸0:

𝐽 (𝐸0) =
⎡
⎢
⎢
⎢
⎣

1 + 𝑘
1 − 𝑑2 ⋅

(2 + 𝑑) [𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖]
2 0

𝑑
2 0

⎤
⎥
⎥
⎥
⎦

(22)
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with

𝑇 𝑟 = 1 + 𝑘
1 − 𝑑2 ⋅

(2 + 𝑑) [𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖]
2 and 𝐷𝑒𝑡 = 0.

The characteristic equation of 𝐽 (𝐸0) is:

𝑙2 − 𝑇 𝑟 ⋅ 𝑙 + 𝐷𝑒𝑡 = 0 (23)

with solutions

𝑙1 = 0

and

𝑙2 = 𝑇 𝑟 = 1 + 𝑘
1 − 𝑑2 ⋅

(2 + 𝑑) [𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖]
2 (24)

Since 𝑙2 > 1, the equilibrium 𝐸0 is unstable.
At the Nash equilibrium point 𝐸∗ the Jacobian matrix is:

𝐽 (𝐸∗) =
⎡
⎢
⎢
⎢⎣

1 + 𝑘
1 − 𝑑2 ⋅ [𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖 − (4 − 𝑑) ⋅ 𝑝∗]

𝑘 ⋅ 𝑑 ⋅ 𝑝∗
1 − 𝑑2

𝑑
2 0

⎤
⎥
⎥
⎥⎦

(25)

with

𝑇 𝑟 = 1 − 2𝑘 ⋅ 𝑝∗
1 − 𝑑2 and 𝐷𝑒𝑡 = − 𝑘 ⋅ 𝑑2 ⋅ 𝑝∗

2 (1 − 𝑑2)
. (26)

The Nash equilibrium is asymptotically stable if the following conditions are hold
(Gandolfo 1997; Elaydi 2005):

𝑖) 1 − 𝐷𝑒𝑡 > 0

𝑖𝑖) 1 − 𝑇 𝑟 + 𝐷𝑒𝑡 > 0

𝑖𝑖𝑖) 1 + 𝑇 𝑟 + 𝐷𝑒𝑡 > 0

(27)

Since

1 − 𝐷𝑒𝑡 = 1 + 𝑘 ⋅ 𝑑2 ⋅ 𝑝∗

2 (1 − 𝑑2)
> 0 (28)

and

1 − 𝑇 𝑟 + 𝐷𝑒𝑡 =
𝑘 ⋅ 𝑝∗ ⋅ (4 − 𝑑2)

2 (1 − 𝑑2)
> 0 (29)

the conditions (i) and (ii) are always satisfied.
The third condition becomes as:

1 + 𝑇 𝑟 + 𝐷𝑒𝑡 > 0 ⇔ 𝑘 ⋅ 𝑝∗ ⋅ (4 + 𝑑2) − 4 (1 − 𝑑2) < 0 (30)
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with

𝑝∗ = 𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖
2 − 𝑑

Then

𝑘 ⋅ [𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖] ⋅ (4 + 𝑑2) − 4 (2 − 𝑑) (1 − 𝑑2) < 0 ⇔

− (4 + 𝛼𝑘) ⋅ 𝑑3 + [(𝛼 + 𝑐 + 𝑝𝑐 ⋅ 𝜖) ⋅ 𝑘 + 8] ⋅ 𝑑2+

+ 4 (1 − 𝛼𝑘) ⋅ 𝑑 + 4𝑘 ⋅ (𝛼 + 𝑐 + 𝑝𝑐 ⋅ 𝜖) − 8 < 0 (31)

Proposition:

The Nash equilibrium 𝐸∗ (𝑝∗1, 𝑝∗2) of the dynamical system Eq.(14) is locally asymptot-
ically stable if:

− (4 + 𝛼𝑘) ⋅ 𝑑3 + [(𝛼 + 𝑐 + 𝑝𝑐 ⋅ 𝜖) ⋅ 𝑘 + 8] ⋅ 𝑑2+

+4 (1 − 𝛼𝑘) ⋅ 𝑑 + 4𝑘 ⋅ (𝛼 + 𝑐 + 𝑝𝑐 ⋅ 𝜖) − 8 < 0

Numerical simulations focusing on the parameter k
To provide some numerical evidence for the chaotic behavior of the system Eq.(14),

as a consequence of change in the parameter k of the speed of adjustment of player
1 and the parameter d of the product differentiation degree, various numerical results
are presented here to show the chaoticity, including two dimensional stability space
between these two parameters, bifurcations diagrams, strange attractor, Lyapunov
numbers and sensitive dependence on initial conditions (Kulenovic, M., Merino, O.,
2002). In order to study the local stability properties of the equilibrium points, it is
convenient to set some fixed values to the parameters 𝛼, 𝑐, 𝑝𝑐 𝑎𝑛𝑑 𝜖 for example
as follows: 𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4 and the stability space between the
parameters k and d is plotted (Fig.1).

Focusing on the parameter k the stability condition can be written as:

𝑘 < 4𝑑3 − 8𝑑2 − 4𝑑 + 8
(4 + 𝑑2) [𝛼 (1 − 𝑑) + 𝑐 + 𝑝𝑐 ⋅ 𝜖]

(32)

Using the Eq.(18) it seems that the Nash Equilibrium position does not depend on the
parameter k and as a result setting some specific values to the other parameters, it is
a fixed point. For example choosing the specific values for the parameters: α = 5, c = 1,
p𝑐 = 0.5, ε = 0.4 and d = 0.5 the Nash Equilibrium position is the point:

E∗ = (2.47, 2.47)

and the stability condition becomes as:

0<𝑘<0.29
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Figure 1: Stability space between the parameters k (horizontal axis) and the parameter d (vertical axis) for
𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4.

This result is verified by the bifurcation diagrams (Fig.2) against the variables 𝑝1(left)
and 𝑝2(right) with respect to the parameter k. Also in Figure 3 these two bifurcation
diagrams of Fig.2 in one are plotted to show the common stability space that appears
for the parameter k. In these figures the Nash equilibrium E∗ is locally asymptotically
stable for 0 < k < 0.29 verifying the previous algebraic result. For d < 0.29 the Nash
equilibrium E∗ becomes unstable, and one observes complex dynamics behavior such
as cycles of higher order and chaos.

Figure 2: Bifurcation diagrams with respect to the parameter d against the variables 𝑝∗1 (left) and 𝑝∗2 (right)
with 400 iterations of the map Eq.(14) for 𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑘 = 0.3.

Figure 3: Two bifurcation diagrams of Fig.2 are plotted in one.

Figure 4 shows the graph of the orbit of the point (0.1,0.1) (strange attractor) and
Lyapunov numbers for 𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑑 = 0.5 and k = 0.42. From
these results when all parameters are fixed and only k is varied the structure of the game
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becomes complicated through period doubling bifurcations, more complex bounded
attractors are created which are aperiodic cycles of higher order or chaotic attractors.
Onmore evidence for chaos are the Lyapunov number (Fig.4 (right)) that they are greater
of 1.

Figure 4: Phase portrait (strange attractor) (left) and Lyapunov numbers (right) of the orbit of (0.1,0.1) with
8000 iterations of the map Eq.(14) for 𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑑 = 0.5 and k = 0.42.

To demonstrate the sensitivity to initial conditions of the system Eq.(14) we compute
two orbits with initial points (0.1,0.1) and (0.101,0.1), respectively. Figure 5 shows the
sensitive dependence on initial conditions for 𝑝1-coordinate of the two orbits, for the
system Eq.(14), plotted against the time with the parameter values 𝛼 = 5, 𝑐 = 1, 𝑝𝑐 =
0.5, 𝜖 = 0.4, 𝑑 = 0.5 and k = 0.42. At the beginning the time series are indistinguish-
able; but after a number of iterations, the difference between them builds up rapidly,
which is clearly shown in Figure 6. From Figures 5 and 6 we show that the time series of
the system Eq.(14) is sensitive dependence to initial conditions, i.e. complex dynamics
behavior occur in this model.

Figure 5: Sensitive dependence on initial conditions for 𝑝1-coordinate plotted against the time: the orbit of
(0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(14) for 𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑑 =
0.5 and 𝑘 = 0.42.

2.2.3. Numerical simulations focusing on the parameter d

In this section some numerical evidence for the chaotic behavior of the system Eq.(14),
as a consequence of change in the parameter d of the product differentiation degree
are provided. In order to study the local stability properties of the equilibrium points,
fixed values for the parameters 𝛼, 𝑐, 𝑝𝑐 , 𝜖 and 𝑘are taken. For example the following
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Figure 6: Two bifurcation diagrams of Fig.6 are plotted in one.

values of these parameters are chosen: 𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑘 = 0.3 and
the Eq.(30) becomes as:

−5.5 ⋅ 𝑑3 + 9.56 ⋅ 𝑑2 − 2𝑑 − 0.56 < 0

and its graph is presented at the Figure 7, in which it seems that it becomes negative
for values of parameter d from about -0.15 until 0.5. This means that when d is between
these values the Nash equilibrium of the system Eq.(14) is stable.

Figure 7: Graph of the function: 𝑓 (𝑑) = −5.5 ⋅ 𝑑3 + 9.56 ⋅ 𝑑2 − 2𝑑 − 0.56 , with 𝑑 ∈ [−1, 1].

Numerical experiments are computed to show the bifurcation diagram with respect
to d, strange attractor of the system Eq.(14) in the phase plane (𝑝1, 𝑝2), and Lyapunov
numbers. In figures 8 and 9 the bifurcation diagrams with respect to the parameter d
against variable 𝑝1(left) and 𝑝2(right) are presented. In these figures the Nash equilibrium
E∗ is locally asymptotically stable for -0.15 < d < 0.5. For d > 0.5 and d < -0.15 the Nash
equilibrium E∗ becomes unstable, and one observes complex dynamics behavior such
as cycles of higher order and chaos.

Figure 10 shows the graphs of the orbit of the point (0.1,0.1) (strange attractors) for
𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑘 = 0.3 and d = -0.50 (left), and d = 0.75 (right).
From these results when all parameters are fixed and only d is varied the structure of
the game becomes complicated through period doubling bifurcations, more complex
bounded attractors are created which are aperiodic cycles of higher order or chaotic
attractors.

Figure 11 shows the Lyapunov numbers’ diagram of the same orbit for 𝛼 = 5, 𝑐 =
1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑘 = 0.3 and d = 0.75. If the Lyapunov number is greater of 1, one
has evidence for chaos.
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Figure 8: Bifurcation diagrams with respect to the parameter d against the variables 𝑝∗1 (left) and 𝑝∗2 (right)
with 400 iterations of the map Eq.(14) for 𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑘 = 0.3.

Figure 9: Two bifurcation diagrams of Fig.8 are plotted in one.

Figure 10: Phase portrait (strange attractor) of the orbit of (0.1,0.1) with 8000 iterations of the map Eq.(14)
for 𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑘 = 0.3 and d = -0.50 (left) and d = 0.75 (right).

Figure 11: Lyapunov numbers (right) of the orbit of (0.1,0.1) with 8000 iterations of the map Eq.(14) for
𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑘 = 0.3 and d = 0.75.

To demonstrate the sensitivity to initial conditions of the system Eq.(14) we compute
two orbits with initial points (0.1,0.1) and (0.101,0.1), respectively. Figure 6 shows sensitive
dependence on initial conditions for 𝑝1-coordinate of the two orbits, for the system

DOI 10.18502/kss.v5i9.9885 Page 72



EBEEC

Eq.(14), plotted against the time with the parameter values 𝑎 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 =
0.4, 𝑘 = 0.3 and d = 0.75. At the beginning the time series are indistinguishable; but
after a number of iterations, the difference between them builds up rapidly, which is
clearly shown in Figure 13. From Figures 12 and 13 we show that the time series of
the system Eq.(14) is sensitive dependence to initial conditions, i.e. complex dynamics
behavior occur in this model.

Figure 12: Sensitive dependence on initial conditions for 𝑝1-coordinate plotted against the time: the orbit of
(0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(14) for 𝛼 = 5, 𝑐 = 1, 𝑝𝑐 = 0.5, 𝜖 = 0.4, 𝑘 =
0.3 and 𝑑 = 0.75.

Figure 13: Two bifurcation diagrams of Fig.12 are plotted in one.

3. Conclusions

The present paper is a partial approach to our main ongoing research objective, which
is the emergence of complexity in various oligopoly models as well as its control. In this
study, through a discrete dynamical system based on the marginal profits of the players,
the dynamics of a nonlinear discrete-time Bertrand-type duopoly game, where the play-
ers have heterogeneous expectations are studied. The stability of equilibrium points,
bifurcations and chaotic behavior are investigated. It is proved that higher values of the
speed of adjustment of bounded rational player and higher positive or lower negative
values of product differentiation degree may change the stability of Nash equilibrium
and cause a structure to behave chaotically, through period-doubling bifurcation. The
chaotic features are justified numerically via computing Lyapunov numbers, strange
attractors and sensitive dependence on initial conditions.
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