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Abstract
In this paper we study the impact of information on the stability of a dynamic Cournot
– type duopoly game. We suppose that one player searches for information about
his rival before he makes his decision. We study how the amount of information
acquired by player, influences the stability of Nash equilibrium. The game is modeled
with a system of two difference equations. Existence and stability of equilibrium
of this system are studied. We show numerically that the model gives chaotic and
unpredictable trajectories as a consequence of change in the information parameter,
but in our case there are also stable trajectories for each value of the information
parameter. To provide some numerical evidence for the chaotic behavior of the
system we present various numerical results including bifurcation diagrams, strange
attractors, Lyapunov numbers and sensitive dependence on initial conditions.
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1. Introduction

Oligopoly is a market between monopoly and perfect competition. Cournot the, French
economist, firstly proposed a duopoly model choosing output as a decision variable
in1838. He treated the case with naive expectations, so that in every step each player
(firm) assumes the last values that were taken by the competitors without estimation
of their future reactions. In 1950, the American mathematician Nash put forward the
equilibrium theory of non-cooperative game, which provided a significant tool for
the research of the oligopoly model. Subsequently, the Nash equilibrium point was
found in both Cournot and Bertrand duopoly models. The game theory is applied to
the oligopoly model which marks the first major development of the oligopoly model.
However, the static equilibrium analysis of the system evolution is bound to lose a lot
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of valuable information. Only in the dynamic state can we observe the essence of the
system evolution.

Since information in the market are usually incomplete, expectations play an impor-
tant role. For instance, if firms do not know the output of the concurrent firm in
advance, they are not able to compute the output that maximizes their profits and
then every firm can adopt various mechanisms of expectations formation about the
quantity offered by the rival. Some authors considered duopolies with homogeneous
expectations (Agiza [1], Agiza et al. [4], Agliari et al. [5], [6], Bischi and Kopel [8],
Kopel [15], Puu, [18], Sarafopoulos [21]). Also models with heterogeneous agents
were studied (Agiza and Elsadany [2], [3], Agiza et al. [4], Den Haan [10], Fanti and
Gori, [12], Tramontana [22], Zhang et al, [24]).

In this paper we consider heterogeneous firms in the sense that they are assumed to
adopt different mechanisms to decide the output in each time period. In particular, we
assume the following expectations: firm 1 (2) has bounded rational (naïve) expecta-
tions about the quantity to be produced in the future by the rival. Bounded rationality
implies that the firm increases or decreases its output according to the information
given by marginal profits obtained in the last period depending on a certain degree
or intensity of reaction (Agiza and Elsadany [2], Naimzada and Sbragia [17], Zhang et

al. [24], Askar [7]). This adjustement mechanism with respect to which firms decide
to increase (decrease) the production if marginal profits are positive (negative), has
been suggested and called “myopic” by Dixit (1986). In contrast with the first one,
the second firm is a naïve player in the sense that it expects that rival will produce
in the future a quantity equal to those produced in the last period. This adjustment
mechanism dates back to the first formal theory of oligopoly by Cournot.

Information plays an important role in decision making process, firms in the market,
believing that they can make amore rational decision if they master more information,
are trying to acquire the information about both rival and market. Information acquisi-
tion is emphasized by business enterprises. The impacts of the information have been
studied in many papers ( Junhai and Zhanbing [14] and their references).

In this paper we study the impact of information on the stability of a dynamic
Cournot – type duopoly gamewith differentiated products. We study how the informa-
tion parameter influences the stability of Cournot-Nash equilibrium and we show that
this parametermay destabilize this equilibrium. It may also cause unpredictablemarket
fluctuations. Moreover, from a mathematical point of view, we show numerically that
the destabilization of the fixed point can occur through a flip bifurcation and also that
a cascade of flip bifurcations may lead to periodic cycles and deterministic chaos.
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To provide some numerical evidence for the chaotic behavior of the system we
present various numerical results including bifurcation diagrams, strange attractors,
Lyapunov numbers and sensitive dependence on initial conditions. We show also that
in our case there are stable trajectories for each value of the information parameter.
Therefore, under certain conditions, this parameter does not tend to destabilize the
market.

The paper is organized as follows. Section 2 presents the two-dimensional discrete
dynamic system of a duopoly game with heterogeneous expectations (bounded ratio-
nal and naïve) and studies both the steady state and dynamics for Cournot differen-
tiated duopoly, showing explicit parametric conditions of the existence, local stability
and bifurcation of the market equilibrium. Section 3 presents numerical simulations of
the analytical findings, while also showing that complex behaviors through standard
numerical tools (i.e., bifurcation diagrams, Lyapunov numbers, strange attractors and
sensitive dependence on initial conditions). Section 4 concludes.

2. The Game

2.1. The construction of the game

We assume the existence of an economy with two types of agents: firms and con-
sumers. There exists a duopolistic sector with two firms, firm 1 and firm 2, and every
firm i produces differentiated goods whose price and quantity are given by pi and
qi, respectively, with 𝑖 ∈ {1, 2}. Their production decisions are taken at discrete-time
periods t (t=0,1,2,…). In this study we consider heterogeneous players andmore specif-
ically, we consider that the firm 1 chooses the production quantity in a rational way, fol-
lowing an adjustment mechanism (bounded rational player), while the firm 2 decides
by naïveway, selecting a quantity that maximizes its output (naïve player). The inverse
demand function is given by the following equation:

𝑝𝑖 = 𝑎 − 𝑞𝑖 − 𝑑𝑞𝑗 , with 𝑖 ≠ 𝑗

So, we have for each firm the following functions:

𝑝1 = 𝑎 − 𝑞1 − 𝑑𝑞2 and 𝑝2 = 𝑎 − 𝑞2 − 𝑑𝑞1 (1)

where α is a positive parameter which expresses the market’s size and 𝑑 ∈ (−1, 1)
is the parameter that reveals the differentiation degree between two products. It is
understood that for positive values of the parameter d the larger the value, the less
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diversification we have between two products. If 𝑑 = 0 each firm participates in a
monopoly. On the other hand negative values of the parameter d are described that
the two products are complementary.

We suppose the following cost functions:

𝐶𝑖 (𝑞𝑖) = 𝑐 ⋅ 𝑞𝑖 (2)

where c > 0 is the marginal cost for two firms.

With these assumptions the profits of the firms are given by:

P𝑖 (𝑞𝑖, 𝑞𝑗) = 𝑝𝑖𝑞𝑖 − 𝐶𝑖 (𝑞𝑖) = (𝛼 − 𝑐 − 𝑞𝑖 − 𝑑𝑞𝑗) 𝑞𝑖, with 𝑖 ≠ 𝑗, ∀𝑖, 𝑗 = 1, 2 (3)

Then the marginal profits at the point of the strategy space are given by:

𝜕P𝑖
𝜕𝑞𝑖

= 𝑎 − 𝑐 − 2𝑞𝑖 − 𝑑𝑞𝑗 , with 𝑖 ≠ 𝑗, ∀𝑖, 𝑗 = 1, 2 (4)

We suppose that first firm is a bounded rational player. Then, if k > 0 the dynamical
equation of the first player is:

𝑞1 (𝑡 + 1) − 𝑞1 (𝑡)
𝑞1 (𝑡)

= 𝑘𝜕P1𝜕𝑞1
(5)

where k is the speed of adjustment of player 1, it is a positive parameter which gives
the extent of production variation of the firm following a given profit signal. We assume
that the second firm searches for information about firm 1 and after that it makes
an estimation based on this information. We assume it is hard to get the perfect
information about first player’s exact decision, but firm 2 can get a bit of effective
information about the exact decision. We use 𝜆 ∈ [0, 1] to denote the amount of effec-
tive information, the largest value of l means a more accurate estimation. Considering
the fact that second firm’s basic information is first firm’s last decision 𝑞1 (𝑡) and firm
2’s perfect information should be the exact decision of this period 𝑞1 (𝑡 + 1), we assume
the estimation depending on l takes the following form:

𝑞𝑒1 (𝑡 + 1) = (1 − 𝜆) 𝑞1 (𝑡) + 𝜆𝑞1 (𝑡 + 1) (6)

where λ=0 means firm 2 only gets the basic information about firm 1, λ=1 means firm
2 gets the perfect information about firm 1. Based on this estimation, the second firm
decides with naïve way by selecting a production that maximizes its profits (naïve
player):

𝑞2 (𝑡 + 1) = argmax
𝑞2

P2 (𝑞𝑒1 (𝑡 + 1) , 𝑞2 (𝑡 + 1)) (7)
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The dynamical system of the players is described by:

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑞1 (𝑡 + 1) = 𝑞1 (𝑡) + 𝑘𝑞1 (𝑡) ⋅
𝜕P1
𝜕𝑞1

𝑞2 (𝑡 + 1) =
𝑎− 𝑐−𝑑𝑞1 (𝑡) − 𝑑 ⋅ 𝑘 ⋅ 𝜆 ⋅ 𝑞1 (𝑡) ⋅ 𝜕P1𝜕𝑞1

2

(8)

We investigate the effect of the information parameter λ on the dynamic of this
system.

2.2. Dynamical analysis

2.2.1. The equilibriums of the game

The equilibriums of the dynamical system Eq.(8), which obtained by setting

𝑞1 (𝑡 + 1) = 𝑞1 (𝑡) = 𝑞∗1 , 𝑞2 (𝑡 + 1) = 𝑞2 (𝑡) = 𝑞∗2

in the system Eq. (8), are the nonnegative solutions of the algebraic system:

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑘 ⋅ 𝑞∗1 ⋅
𝜕P1
𝜕𝑞1

= 0

𝑞∗2 =
𝑎−𝑐−𝑑𝑞∗1 −𝑑 ⋅ 𝑘 ⋅ 𝜆 ⋅ 𝑞∗1 ⋅

𝜕P1
𝜕𝑞1

2

(9)

• If 𝑞∗1 = 0 , then 𝑞∗2 = 𝑎−𝑐
2 and we obtain the boundary equilibrium:

𝐸0 = (0,
𝑎 − 𝑐
2 ) (10)

• If 𝜕𝑃1
𝜕𝑞1

= 𝜕𝑃2
𝜕𝑞2

= 0, then we form the following system:

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑞∗1 =
𝑎 − 𝑐 − 𝑑𝑞∗2

2

𝑞∗2 =
𝑎 − 𝑐 − 𝑑𝑞∗1

2

(11)

The solutions of this system are:

𝑞∗1 = 𝑞∗2 =
(𝑎 − 𝑐) (2 − 𝑑)

4 − 𝑑2 ,

and the Cournot-Nash equilibrium of the dynamical game is :

𝐸∗ = (𝑞∗1 , 𝑞∗2) = (
(𝑎 − 𝑐) (2 − 𝑑)

4 − 𝑑2 , (𝑎 − 𝑐) (2 − 𝑑)
4 − 𝑑2 ) (12)
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2.2.2. Stability of equilibriums

In order to study the local stability of equilibrium points of the model Eq.(8), we con-
sider the Jacobian matrix 𝐽 (𝑞1, 𝑞2) along the variable strategy (𝑞1, 𝑞2):

𝐽 (𝑞1, 𝑞2) =
⎡
⎢
⎢
⎢
⎢
⎣

𝑓𝑞1 𝑓𝑞2

𝑔𝑞1 𝑔𝑞2

⎤
⎥
⎥
⎥
⎥
⎦

(13)

Where

𝑓 (𝑞1, 𝑞2) = 𝑞1 + 𝑘𝑞1 ⋅
𝜕P1
𝜕𝑞1

= 𝑞1 + 𝑘 ⋅ 𝑞1 [𝑎 − 𝑐 − 2𝑞1 − 𝑑𝑞2]

𝑔 (𝑞1, 𝑞2) =
𝑎− 𝑐−𝑑𝑞1−𝑑 ⋅ 𝑘 ⋅ 𝜆 ⋅ 𝑞1 ⋅ 𝜕P1𝜕𝑞1

2

(14)

Then

𝐽 (𝑞1, 𝑞2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + 𝑘
(
𝜕P1
𝜕𝑞1

+ 𝑞∗1 ⋅
𝜕2P1
𝜕𝑞21 ) − 𝑑𝑘𝑞∗1

−𝑑2 − 𝑑𝑘𝜆
2 (

𝜕P1
𝜕𝑞1

− 2𝑞∗1)
𝑑2𝑘𝜆𝑞∗1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)

For the equilibrium 𝐸0:

𝐽 (𝐸0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + 𝑘 ⋅ 𝜕P1𝜕𝑞1 0

−𝑑2 − 𝑑𝑘𝜆
2 ⋅ 𝜕P1𝜕𝑞1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)

with trace

𝑇𝑟 [𝐽 (𝐸0)] = 1 + 𝑘 (𝑎 − 𝑐 − 𝑑𝑞∗2) = 1 + 𝑘 ⋅ (𝑎 − 𝑐) (2 − 𝑑)
2

and determinant

𝐷𝑒𝑡 [𝐽 (𝐸0)] = 0.

The characteristic equation of 𝐽 (𝐸0) is:

𝑥2 − 𝑇𝑟 ⋅ 𝑥 + 𝐷𝑒𝑡 = 0 (17)
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The solutions of Eq. (17) are the following eigenvalues of the Jacobian matrix:

𝑥1 = 0 and 𝑥2 = 1 + 𝑘 ⋅ (𝑎 − 𝑐) (2 − 𝑑)
2 (18)

Since 𝑎 − 𝑐 > 0 , it’s clearly that|𝑥2| > 1, and the equilibrium 𝐸0 is unstable.

We now study the local stability properties of the Cournot– Nash equilibrium Eq. (12).
In this equilibrium 𝐸∗ the Jacobian matrix is:

𝐽 (𝐸∗)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 − 2𝑘𝑞∗1 − 𝑘𝑑𝑞∗1

−𝑑2 + 𝑑𝑘𝜆𝑞∗1
𝑑2𝑘𝜆𝑞∗1

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(19)

with

𝑇𝑟 [𝐽 (𝐸∗)] = 1 − 2𝑘𝑞∗1 +
𝑑2𝑘𝜆𝑞∗1

2 (20)

and

𝐷𝑒𝑡 [𝐽 (𝐸∗)] =
𝑑2𝑘𝑞∗1
2 (𝜆 − 1) (21)

The stability conditions for a system in two dimensions with discrete time are generi-
cally given by (see, e.g., Elaydi S., [11], Gandolfo G., [13]):

(𝑖) H = 1 − 𝐷𝑒𝑡 > 0

(𝑖𝑖) TC = 1 − 𝑇𝑟 + 𝐷𝑒𝑡 > 0

(𝑖𝑖𝑖) F = 1 + 𝑇𝑟 + 𝐷𝑒𝑡 > 0

(22)

The violation of any single inequality in Eq. (22), with the other two being simultane-
ously fulfilled leads to:

(i) a flip bifurcation (a real eigenvalue that passes through −1) when F=0

(ii) a fold or transcritical bifurcation (a real eigenvalue that passes through +1) when
TC=0

(iii) a Neimark–Sacker bifurcation (i.e., the modulus of a complex eigenvalue pair that
passes through 1) when H=0,

Since

1 − 𝐷𝑒𝑡 = 1 + 𝑑2𝑘 (1 − 𝜆)
2 ⋅ 𝑞∗1 > 0, (23)
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and

1 − 𝑇𝑟 + 𝐷𝑒𝑡 = 𝑘𝑞∗1 ⋅
4 − 𝑑2
2 > 0 (24)

The conditions (i) and (ii) of Eq. (22) are always fulfilled. Then the condition (iii) is the
condition for the local stability of the Nash equilibrium.

Since

1 + 𝑇𝑟 + 𝐷𝑒𝑡 > 0 ⇔ 1
2 + 2

𝑑2 −
2

𝑑2𝑘𝑞∗1
< 𝜆 ≤ 1 (25)

we obtain

Proposition: The Nash equilibrium of the dynamical system Eq.(8) is locally asymptotically

stable if:

1
2 + 2

𝑑2 −
2

𝑑2𝑘𝑞∗1
< 𝜆 ≤ 1 (26)

where

𝑞∗1 =
(𝑎 − 𝑐) (2 − 𝑑)

4 − 𝑑2 and 𝑑 ∈ (−1, 1) , 𝑘 ∈ (0, 1)

3. Numerical Simulations

The main purpose of this section is to show that the qualitative behavior of the solu-
tions of the duopoly game with heterogeneous player described by the dynamic sys-
tem Eq. (8), can generate, in addition to the local flip bifurcation and the resulting
emergence of a two-period cycle, chaotic behavior.

To provide some numerical evidence for the chaotic behavior of the system Eq.(8),
as a consequence of change in the parameter λ of the information degree, we present
various numerical results, including bifurcations diagrams, strange attractors, Lyapunov
numbers and sensitive dependence on initial conditions (Kulenovic, M. and Merino, O.
[16]). For this, it is convenient to choose the following parameter set only for illustrative
purposes𝑎 = 6.5, 𝑐 = 0.5, 𝑘 = 0.61, 𝑑 = 0.94. In this case the stability condition
becomes:

0.944 < 𝜆 ≤ 1 (27)
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Numerical experiments are computed to show the bifurcation diagram with respect to
λ, strange attractors of the system Eq. (8) in the phase plane (𝑞1, 𝑞2) and Lyapunov
numbers. Figure 1 shows the region of stability between λ and k (left) or d (right).
Figure 2 shows bifurcation diagramswith respect to the parameter λ. The figure clearly
shows that a decrease in the extent of information parameter λ (i.e., the parameter
λ moves from 1 to values smaller than 1), implies that the map Eq. (8) converges to a
fixed point for 0.944 < λ < 1. Starting from this interval, in which the Cournot- Nash
equilibrium is stable. Fig. 2 shows, also, that the equilibrium undergoes a flip bifurcation
at λ=0.944. Then, a further decrease in information parameter implies that a stable
two-period cycle emerges for 0.35 < λ < 0.944. As long as the parameter λ reduces
a four-period cycle, cycles of highly periodicity and a cascade of flip bifurcations that
ultimately lead to unpredictable (chaotic) motions are observed when λ is very small.
As an example, the phase portrait of Fig. 4 depicts the strange attractor for λ= 0.04.
This is the graph of the orbit of (0.1, 0.1) with 2000 iterations of the map Eq. (8) for
𝑎 = 6.5, 𝑐 = 0.5, 𝑘 = 0.61, 𝑑 = 0.94 and 𝜆 = 0.04.

    

Figure 1: Region of stability between λ (horizontal axis) and k (left) or d (right) (vertical axis) of Eq. (26)
for (left) and for 𝑎 = 6.5, 𝑐 = 0.5, 𝑘 = 0.61 (right).

Another numerical tool useful in order to determine the constellation of parameters
forwhich trajectories converge to periodic cycles, quasi-periodic and chaotic attractors,
is the study of the Lyapunov number (i.e. the natural logarithm of Lyapunov exponent)
as a function of the parameter of interest (which, in the present paper, is assumed to
be the degree of information λ). As is known, there exists evidence for quasi periodic
behavior (chaos) when the Lyapunov number is equal to one (greater than 1). Figure
4 shows Lyapunov numbers of the same orbit. If the Lyapunov number is greater of 1,
one has evidence for chaos.
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Figure 2: Bifurcation diagrams with respect to the parameter λ against variable (left) and (right), with 400
iterations of the map Eq. (8) for 𝑎 = 6.5, 𝑐 = 0.5, 𝑘 = 0.61, 𝑑 = 0.94.

Figure 3: Two bifurcation diagrams of Fig.2 are plotted in one.

     

Figure 4: : Phase portrait (strange attractors) and Lyapunov numbers of the orbit of (0.1,0.1) with 2000
iterations of the map Eq.(8) for 𝑎 = 6.5, 𝑐 = 0.5, 𝑘 = 0.61, 𝑑 = 0.94 and for 𝜆 = 0.04.
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As is known, the sensitivity dependence to initial conditions is a characteristic of
deterministic chaos. In order to show the sensitivity dependence to initial conditions
of system Eq. (8), we have computed two orbits with initial points (0.1, 0.1) and (0.101,
0.1), respectively. Figure 5 shows sensitive dependence on initial conditions for q1-
coordinate of the two orbits, for the system Eq. (8), plotted against the time with
the parameter values 𝑎 = 6.5, 𝑐 = 0.5, 𝑘 = 0.61, 𝑑 = 0.94 and 𝜆 = 0.04. At the
beginning the time series are indistinguishable; but after a number of iterations, the
difference between them builds up rapidly. From these results when all parameters
are fixed and only λ is varied the structure of the game becomes complicated through
period doubling bifurcations, more complex bounded attractors are created which are
aperiodic cycles of higher order or chaotic attractors.

    

Figure 5: Sensitive dependence on initial conditions for q1-coordinate plotted against the time: the two
orbits: the orbit of (0.01, 0.01) (left) and the orbit of (0.0101, 0.0101) (right), for the system Eq. (8), with
the parameters values for 𝑎 = 6.5, 𝑐 = 0.5, 𝑘 = 0.61, 𝑑 = 0.94 and for 𝜆 = 0.04.

Figure 6: Bifurcation diagrams with respect to the parameter λ against variable 𝑞1 and𝑞2, with 400
iterations of the map Eq. (8) for 𝑎 = 6.5, 𝑐 = 0.5, 𝑘 = 0.4, 𝑑 = 0.94.
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But if we choose 𝑎 = 6.5, 𝑐 = 0.5, 𝑘 = 0.4, 𝑑 = 0.94 the stability condition
becomes:

𝜆 > −0.014 (28)

From Eq. (28) for each λ in the interval [0, 1] the Nash equilibrium is locally asymptot-
ically stable (Figure 6). Therefore, for these values there are stable trajectories and a
higher or lower degree of information does not destabilize the market.

4. Conclusions

In this paper we analyzed the dynamics of a differentiated Cournot duopoly with
heterogeneous expectations, linear demand and cost functions. One player searches
for information about his rival before his decision and we investigated the effects of
the information in this dynamic game. The main result is that a lower degree of infor-
mation may destabilize the unique Cournot–Nash equilibrium. While also showing the
existence of deterministic chaos. But, we showed also that, if the products are almost
homogeneous (high value of the differentiation parameter) and for lower values of
the speed of adjustment, there are also stable trajectories for each value of the level
of information. The economic intuition behind the result is that if the degree of product
differentiation is small (i.e. fiercer competition), the information parameter does not
always destabilize the market.

References

[1] Agiza H.N., On the analysis of stability, bifurcation, chaos and chaos control of Kopel
map, Chaos, Solitons & Fractals 10, 1909-1916, (1999).

[2] Agiza H.N. and Elsadany A.A., Chaotic dynamics in nonlinear duopoly game
with heterogeneous players, Applied Mathematics and Computation 149, 843-860,
(2004).

[3] Agiza H.N. and Elsadany A.A., Nonlinear dynamics in the Cournot duopoly game
with heterogeneous players, Physica A 320, 512-524, (2003).

[4] Agiza H.N., Hegazi A.S. and Elsadany A.A., Complex dynamics and synchronization
of duopoly gamewith bounded rationality,Mathematics and Computers in Simulation

58, 133-146, (2002).

DOI 10.18502/kss.v3i10.3534 Page 142



EBEEC 2018

[5] Agliari A., Gardini L. and Puu T., Some global bifurcations related to the appearance
of closed invariant curves, Mathematics and Computers in Simulation 68, 201-219,
(2005).

[6] Agliari A., Gardini L. and Puu T., Global bifurcations in duopoly when the Cournot
point is destabilized via a subcritical Neimark bifurcation, International Game Theory

Review 8, 1-20, (2006).

[7] Askar S.S., Complex dynamic properties of Cournot duopoly gameswith convex and
logconcave demand function, Operations Research Letters 42, 85-90, (2014).

[8] Bischi G.I. and Kopel M., Equilibrium selection in a nonlinear duopoly game with
adaptive expectations, Journal of Economic Behavior and Organization 46, 73-100,
(2001).

[9] Dixit A.K., Comparative statics for oligopoly, International Economic Review 27, 107-
122, (1986).

[10] Den Haan W.J., The importance of the number of different agents in a heteroge-
neous asset – pricing model, Journal of Economic Dynamics and Control 25, 721-746,
(2001).

[11] Elaydi S., An Introduction to Difference Equations, 3𝑟𝑑 ed., Springer – Verlag, New
York, 2005.

[12] Fanti L. and Gori L., The dynamics of a differentiated duopoly with quantity
competition, Economic Modelling 29, 421-427, (2012).

[13] Gandolfo G., Economic dynamics, Springer, Berlin, 1997.

[14] Junhai Ma, Zhanbing Guo, The influence of information on the stability of a dynamic
Bertrand game, Commun. Nonlinear. Sci. Numer. Simulat. 30, 32-44, (2016).

[15] Kopel M., Simple and complex adjustment dynamics in Cournot duopoly models,
Chaos, Solitons & Fractals 12, 2031-2048, (1996).

[16] Kulenovic M. and Merino O., Discrete Dynamical Systems and Difference Equations
with Mathematica, Chapman & Hall/Crc., 2002.

[17] Naimzada A.K. and Sbragia L., Oligopoly games with nonlinear demand and cost
functions: two bounded rational adjustment processes, Chaos, Solitons & Fractals

29, 707-722, (2006).

[18] Puu T., The chaotic duopolists revisited, Journal of Economic Bhavior and Organization

37, 385-394, (1998).

[19] Puu T., Complex oligopoly dynamics. In: Lines M., editor, Nonlinear dynamical
systems in economics, Springer Wien New York: CISM, 165-186, (2005).

DOI 10.18502/kss.v3i10.3534 Page 143



EBEEC 2018

[20] Sarafopoulos G., On the dynamics of a duopoly game with differentiated goods,
Procedia Economics and Finance 19, 146-153, (2015).

[21] Sarafopoulos G., Complexity in a duopoly gamewith homogeneous players, convex,
log linear demand and quadratic cost functions, Procedia Economics and Finance 33,
358-366, (2015).

[22] Tramontana F., Heterogeneous duopoly with isoelastic demand function, Economic

Modelling 27, 350-357, (2010).

[23] Wu W., Chen Z. and Ip W.H., Complex nonlinear dynamics and controlling chaos in
a Cournot duopoly economic model, Nonlinear Analysis: Real World Applications 11,
4363-4377, (2010).

[24] Zhang J., Da Q. and Wang Y., Analysis of nonlinear duopoly game with heteroge-
neous players, Economic Modelling 24, 138-148, (2007).

DOI 10.18502/kss.v3i10.3534 Page 144


	Introduction
	The Game
	The construction of the game 
	Dynamical analysis 
	The equilibriums of the game 
	Stability of equilibriums


	Numerical Simulations
	Conclusions
	References

