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Abstract: The paper considers credit organizations as the pivotal elements of the state's economic and financial system. Credit institutions license withdrawal probability is estimated on the basis of binary choice models. A methodology for processing and analyzing credit institutions data based on regression analysis and multi-criteria optimization methods has been developed and used to identify bank groups potentially threatening the stability of the Russian banking system and the integrity of anti-money laundering and terrorist financing system (AML/CFT).
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Introduction
The stability of the banking system is a necessary condition for national financial and economic security. Therefore, banking supervisors should ensure sustainable development and appropriate regulation of banking system. Due to its inherent characteristics: a multitude of financial services and large number of transactions, the modern banking sector is one of the main channels used by criminals to launder money and finance terrorism. 
The number of credit institution license withdrawals illustrates the scope of money laundering (ML) in the banking sector is (Fig. 1).
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Fig. 1 — Operating Russian banks
In 2015, the number of credit institutions actively involved in money laundering, in illegal funds transfers abroad, as well as in transit operations accounted for approximately 36% of the total number of banks that were closed in 2015 [1]. The characteristic of damage caused by the activities of unscrupulous banks in monetary terms is the volume of identified suspicious financial transactions and the amount of money flowing from the Russian Federation for doubtful reasons. According to Rosfinmonitoring reports, these amounts increased from 39.6 trillion rubles in 2013 to almost 5.37 trillion rubles in 2015 [2-3]. In addition, the volume of insurance payments made by the State Corporation Deposit Insurance Agency (DIA) can be another indicator. For the period from January 2014 to September 2016, the volume of DIA payouts totaled 957.7 billion rubles [4].
License withdrawals from banks providing services to higher-risk customers and involved in conducting suspicious transactions provokes an "inflow" of unscrupulous clients to other financial institutions. Thus, in 2013 Rosfinmonitoring identified a scheme for migrating shadow schemes from Dagestan to the Samara region following the revocation of licenses from AKB Express, AKZB Derbent-Credit, Trust Bank, Transenergobank [5]. Besides, some unscrupulous clients become clients of the largest financial institutions with a goal to "get lost" in branch networks, large customer databases and voluminous transactions.
[bookmark: _Toc357262858][bookmark: _Toc357352644]New and increasingly sophisticated risk-based methods used by the supervisory authorities are an essential in ensuring an effective and efficient national AML / CFT system. Therefore, development of a remote analysis method used to identify "risk groups" - banks whose state may cause concern, and audit of their activities becomes a priority issue. Though, remote methods and predictive models cannot unambiguously ascertain bank's reliability, possible risks of early detection will allow to either timely initiate credit institution recovery measures, or to significantly reduce the costs of liquidating as well as terminate the withdrawal of capital from the country.
Material and Theoretical Bases of Research
To predict the license withdrawal probability, the binary choice models were used (1).
	
	(1)


Most common function F () uses the logistic distribution function (Logit model) (2). and the standard normal distribution function (Probit-model). (3).
	
	(2)

	
	(3)


Decision can be taken in accordance with rule (4).
	

	(4)


The probability of closure of commercial banks in the United States was analyzed based on logit models in [6-7]. In [8] logit models were applied to assess the risk of bank failures in the member countries of the Economic Community of Central African countries. A comparison between the effectiveness of probit models, logit models, proportional risk models, and neural networks for forecasting changes in bank credit ratings was presented in [9]. Research of prediction of the probability of bankruptcy of credit institutions in the Russian Federation was done by Golovan S., Karminsky A., Peresetsky A. [10-12]. In this paper, the logit model was chosen as a research tool, as the adequacy of its application was repeatedly proved to determine the probability of bank failures, as well as the advantage over other methods.
Credit institutions 2013 - 2016 performance data from their mandatory reporting as well as information on licenses revocation published by the Bank of Russia were used for the analysis. The following financial indicators were used to build the model: highly liquid assets, investments in securities, investments in the equity of other organizations, Interbank credits raised, loans to individuals, loans to enterprises and organizations, fixed assets and intangible assets, other assets, deposits of individuals, deposits of enterprises and organizations, Interbank credits granted, bonds and promissory notes issued, net profit, equity.
Prior to building a model the major knowingly reputable and systemically important banks, VTB 24 and the Bank of Moscow, were removed from the data set as anomalous objects. The Figure 2 demonstrates the number of banks examined in the annual sections after these transformations.
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Fig 2. — The number of bank in annual cross-sections
A preliminary analysis of the data showed that the largest variation in the average values in each of the sections was observed in the following indicators: investments in securities, Interbank credits raised, Interbank credits granted, investments in the equity of other organizations, bonds and promissory notes issued, loans to individuals.
The construction of binary selection models based on 2013 data was carried out using the statistical analysis medium R. Since the number of banks closed for the year is much less than the total number of banks, stratified samples with an increased number of closed banks were formed during the construction of the model. On the basis of each formed stratified sample, a logit model was constructed, with the help of which a calculation of the predicted values was made for the full data of each of the annual cross-sections considered.
The analysis of the indicators significance is presented in Table 1. Table 1 provides information on the percentage of models in which the indicator was significant at 99% and 95% confidence interval. Further analysis shows that out of five most frequently significant at 99% confidence interval of indicators four had the greatest difference in the mean values for banks, which will be closed by August next year, and the banks that will continue to operate.
Table 1— Indicators significance in models
	Indicators
	99% Conf. Interval
	95% Conf. Interval 

	Highly liquid assets
	23%
	25%

	Loans to enterprises and organizations
	14%
	31%

	Interbank credits raised
	10%
	21%

	Interbank credits granted
	8%
	23%

	Investments in the equity of other organizations
	8%
	20%

	Fixed assets and intangible assets
	7%
	21%

	Deposits of enterprises and organizations
	6%
	19%

	Deposits of individuals
	5%
	16%

	Bonds and promissory notes issued
	5%
	16%

	Investments in securities
	5%
	15%

	Loans to individuals
	5%
	15%

	Equity
	4%
	19%

	Net profit
	4%
	10%

	Other assets
	2%
	12%



The predicted strength of the constructed models was estimated by applying them to the full data set for 2013 and calculating the percentage of correctly predicted closed (criterion K1) and open (criterion K0) banks.
In this study, for each model, its own threshold was determined and used to identify bank status on the basis on the logistic model. The best threshold for the model will be the one which ensures forecast accuracy at the level of at least 50% for both closed and open banks.
Further on, pairwise comparison of the criteria from the whole set of constructed models was used to choose non-dominant models, i.e. incomparable by quality criteria. Figure 3 visualizes the set of all constructed models in the context of the criteria K1 and K0 with not dominated by their characteristics of forecasting quality models in red.
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Fig. 3 — Criteria K0 and K1 for binary choice models
Table 2 summarizes the results of non-dominant model application to 2013 data. 

Table 2 — Multitude of non-dominant models 
	 Model
	Suspicious
	Correctly predicted
	К1, %
	К0, %
	К, 
% 
	α

	
	count
	%
	closed
	operating
	
	
	
	

	Model 198
	445
	49,8%
	51
	419
	63,0
	51,5
	52,5
	0,75

	Model 2
	410
	45,9%
	49
	452
	60,5
	55,5
	55,9
	0,63

	Model 92
	401
	44,9%
	45
	457
	55,6
	56,1
	56,0
	0,45

	Model 140
	352
	39,4%
	41
	502
	50,6
	61,7
	60,6
	0,58



Models application results prove that out of all non-dominant models, model 198 for predicting bank closure has the greatest predictive power: a closed bank is recognized in 63% of cases. The best in terms of excluding banks from the priority consideration with a low probability of revoking the license is model 140 - the initial sample can be reduced down to 40%.
Selected models test results for 2014 and 2015 data are presented in Table 3.

Table 3— Models performance verification against 2014 - 2015 data
	 Model
	Suspicious
	Correctly predicted 
	К1, %
	К0, %
	К, % 
	α

	
	count
	%
	closed
	operating
	
	
	
	

	2014

	Model 198
	469
	52%
	38
	404
	39,2
	54,7
	52,9
	0,75

	Model 2
	277
	31%
	21
	579
	21,6
	78,5
	71,8
	0,63

	Model 92
	423
	47%
	38
	450
	39,2
	61,0
	58,4
	0,45

	Model 140
	397
	44%
	33
	471
	34,0
	63,8
	60,3
	0,58

	2015 

	Model 198
	441
	49%
	49
	354
	44,5
	55,7
	53,9
	0,75

	Model 2
	409
	46%
	45
	382
	40,9
	60,1
	57,2
	0,63

	Model 92
	365
	41%
	34
	415
	30,9
	65,3
	60,1
	0,45

	Model 140
	338
	38%
	30
	438
	27,3
	68,9
	62,7
	0,58



As can be seen from Table 3, as a result of application of the constructed models against 2014 data, the model 198 became dominated by the forecast quality criteria by the model 92. However, when used against 2015 data, this model again showed the best result in determining credit institutions whose licenses will be withdrawn and not dominated by either the other models under consideration. Therefore, it was decided not to choose one model for ranking banks according to the level of suspicion, but to take into account the forecast of each of the non-dominated models.
Each bank was ranked with rank meaning the number of non-dominated models that predicted a revocation of a license from this bank. The higher the rank, the higher the degree of suspicion of the credit institution. In one group, banks with the same rank will be included.
Table 4 presents the results of ranking of credit institutions on 2013 data.

Table 4 — 2013 ranking results
	Rank
	Number of banks
	Closed by August 2014
	Operating in August 2014
	Out of them:

	
	
	
	
	Closed by August 2015
	Closed by August 2016

	4
	157
	22
	135
	16
	10

	3
	191
	23
	168
	18
	28

	2
	127
	10
	117
	17
	14

	1
	157
	9
	148
	17
	25

	0
	263
	17
	246
	23
	32



Conclusion
In the course of the study, it was established that the quality of bank closure risk early detection models was improved through constructing models on the basis of training samples formed according to the principle of approximate equalization of the number of banks of each type (closed and open).
To assess the quality of forecasting, criteria were formulated for determining the threshold for binary choice models. According to these criteria, for each model, the threshold was chosen that allows to determine not less than 50% of the objects of each type.
In the multitude of constructed models the ones that were incomparable with respect to preferences were selected. The average number of banks, whose licenses will be withdrawn was correctly identified by binary models and constituted 57% in 2013 data set, 34% and 36% in 2014 and 2015 data sets, respectively.
As a result of building models and analyzing the results of forecasting, a methodology for processing and analyzing data on credit institutions using regression analysis methods, as well as multi-criteria optimization methods and decision theory was developed. The methodology makes it possible to identify groups posing potential danger to the integrity of the Russian banking system and AML|CFT efforts in credit institutions. Based on this methodology, a list of credit organizations ranked by the degree of suspicion was formed.
The results of this study are aimed at improving the efficiency of early detection of credit institutions that threaten the stability of the country's banking system and can be used by supervisory federal executive bodies to prevent abuse of legislation in the field of combating money laundering and terrorist financing.
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