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Abstract.
The paper considers a Cournot-type duopoly game, in which linear demand and cost
functions are used. The two players produce differentiated goods and offer them at
discrete times on a common market. In the cost functions of the players, in addition to
the production cost, the cost of transporting the products is also included. Each firm
does not care only about its profits but also about the percentage of its opponents’
profits, using a generalized relative profit function. In this model, the players follow
different strategies. More specifically, the first player is characterized as a bounded
rational player while the second player follows an adaptive mechanism. The existence
of the Nash Equilibrium is proved, and its stability conditions are found. The complexity
that appears for some values of the game’s parameters is shown. A mechanism by
which the chaotic behavior of the discrete dynamical system is presented, importing a
new parameter m. The algebraic results are verified, and the apparent complexity is
shown by plotting bifurcation diagrams and strange attractors, computing the Lyapunov
numbers, and checking the system’s sensitivity on its initial conditions.
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1. INTRODUCTION

The oligopoly market is dominated by a number of companies that offer homogeneous
or differentiated products. The two classic oligopoly markets are named as Cournot-
model (production quantity competition) and Bertrand-model (price competition). In
Cournot oligopoly models the companies try to control their production quantities in
order to maximize their profits. Conversely, a company that participates in a Bertrand
oligopoly market chooses its product’s price and following a strategy tries to optimize
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its outputs. Officially, the first oligopoly theory was developed by Augustin Cournot in
1838, when he presented the case of an oligopoly model in which the competitors follow
naïve expectations. Through these naïve expectations the players take into account
their competitors’ last taken values and do not consider their future reactions. The
Bertrand oligopoly model is named in 1883 after Joseph Bertrand presented his game
theory model by which the competitors optimize their profits by selecting prices for their
products.

These first studies of Cournot and Bertrand were the first milestones for the subse-
quent works of many authors who contributed to the development and improvement of
thesemodels by differentiating or focusing onmany of the basic assumptions of Cournot
and Bertrand games. Different approaches to companies’ behavior were proposed. In
some duopoly models homogeneous agents were studied from some authors where
they found a variety of complex dynamics, such as appearance of strange attractors
[1], [4], [5], [6], [12], [19], [24], [26]. Also, heterogeneous expectations are considered in
other studies [2], [3], [16], [27], [28], [29], [33], [35]. In real markets there is ignorance
of the entire demand function for the producers, although it is possible that for them
there is a perfect knowledge of technology, that it is represented by the cost functions.
Therefore, it is more likely that firms make some local estimate of the demand. This
issue has been discussed previously [11], [23], [21], [7], [8]. Efforts have been made to
model bounded rationality to different economic areas: oligopoly games [2], [13], [36];
financial markets [17]; macroeconomic model such as multiplier-accelerator framework
[34]. Specifically, difference equations have been used extensively to represent these
economic models [15], [32]. Bounded rational players (firms) update their production
strategies on discrete time periods using a local estimate of their marginal profits.
With a similar local adjustment mechanism, the companies are not required to have a
complete knowledge of the demand and cost functions [4], [22], [36], [8]. Also, in other
studies the oligopolistic players use adaptive mechanisms that allow them to decide by
a possibility as bounded rational or naïve [9]. All they need to know is whether themarket
responses to small production changes by an estimate of the marginal profit. All of the
previous studies are mainly based on private enterprises, which seek to maximize their
own profits. However, there are many companies with different ownership structures. A
publicly-owned firm tends to maximize the social welfare, a semi-publicly-owned firms
tend to maximize the weighted average of social welfare and also its own profit. [14],
[30]. Some firms’ structures are characterized by the separation between ownership
and management, with managers that care about the maximization of a utility function
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that consists of a percentage of the opponent company’s profits i.e. the generalized
relative profit function [10], [31].

In this work the dynamical analysis of a Cournot-type duopoly game with differenti-
ated products and heterogeneous expectations is presented. As it is shown the model
gives complex, chaotic and unpredictable trajectories as a consequence of change in
the main parameters i.e. the parameter k (players’ speed of adjustment), β (second
player’s adaptation probability) and r (percentage domestic energy adequacy). The
paper is organized by the following sections: In section 2 the main hypothesis of game
are presented about the market, the competitors and their expectation strategies. After
the construction of the discrete dynamical system (D.D.S) of game, the Nash Equilibrium
is found and the stability conditions are found. The Nash Equilibrium coordinates and the
local stability are visualized using the system’s bifurcation diagrams. Strange attractors,
Lyapunov number graph and sensitivity dependence on initial conditions are presented
as an evidence for the chaotic behavior of D.D.S. that appears when the game’s
parameters take values outside the stability space. An attempt to control this chaotic
orbit is made by entering a new control parameter and a dynamical analysis focusing
on this parameter is presented computing and visualized the new stability conditions
that allow the other parameters to take values outside their stability spaces. General
conclusions concerning the behavior of the discrete dynamic system for the various
values of the game parameters are presented in section 3.

2. The duopoly Game

2.1. The construction of game

This paper considers heterogeneous players more specifically, that the company 1
chooses its product’s price in a rational way, following an adjustment mechanism and
characterized as bounded rational player, while the company 2, by naïve way (naïve
player) decides a price that maximizes its output. A classic Cournot-type duopoly market
is considered, where the two companies (players) produce and offer at discrete time
periods on a common market differentiated products. The players’ decisions about their
production are taken simultaneously at discrete time periods t = 0, 1, 2, … At each time
period t, every company form an expectation of its rival’s strategy for the next time
period in order to determine the corresponding profit-maximizing prices for the time
period t + 1. It is supposed that q1, q2 are the production quantities of each company.
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Also, the main hypothesis is that the consumers’ preferences are represented by the
following equation:

𝑈 (𝑞1, 𝑞2) = 𝛼 ⋅ (𝑞1 + 𝑞2) −
1
2 (𝑞

2
1 + 𝑞22 + 2𝑑 ⋅ 𝑞1 ⋅ 𝑞2) (1)

where the market’s size is expressed by positive parameter α > 0 and the differentiation
degree between the two products is revealed by the parameter 𝑑 ∈ (−1, 1). For
positive values of the differentiation degree (parameter d) the larger the value, the less
diversification there is between their products. On the other hand, when the parameter
d takes negative values it describes that both products are complementary and the
minimum negative value of the differentiation parameter i.e. d = – 1, reveals that the
market behave with the phenomenon of full competition. When d = 0, both products
are independent and each company participates in a monopoly market. The inverse
demand functions come out from the maximizing of Eq.(1) and are given as follows:

𝑝𝑖 = 𝛼 − 𝑞𝑖 − 𝑑 ⋅ 𝑞𝑗 with i ≠ j and i, j � {1,2} (2)

where 𝑝𝑖 is the product price and 𝑞𝑖 is the production quantity of firm i. In this oligopoly
game linear cost functions are supposed for both players that contain the production
cost and the transportation cost as follows:

The production cost is given by the following linear function:

𝐶𝑃 (𝑞𝑖) = 𝑐𝑖 ⋅ 𝑞𝑖 , with i � {1,2} (3)

where 𝑐𝑖 is the marginal cost for each i company and the transportation cost function
is given by:

𝐶𝑇 (𝑞𝑖) =
𝑓𝑖
1+𝑟 ⋅ 𝑞𝑖 + 𝑠𝑖 , with i � {1,2} (4)

where 𝑓𝑖 gives the transportation price that the company i has agreed with its carrier
and 𝑠𝑖 is the fixed transport cost regardless of the quantity transported. The parameter
r > – 1 expresses the percentage domestic energy adequacy (fuel) that is calculated
using the following equation:

𝑟 = 𝑒𝑠−𝑒𝑛
𝑒𝑛

, with 𝑒𝑠 > 0 (5)

where 𝑒𝑠 is the positive domestic stocked energy and 𝑒𝑛 expresses the domestic
energy needs. This transportation cost function is similar with the linear cost function
that is used by Liuwei Zhao [37].

The parameter r takes positive values decreasing the transportation costs when
the country has energy stock greater than its needs and negative values increasing

DOI 10.18502/kss.v8i1.12646 Page 175



EBEEC

the transportation costs when the stock is small and not enough to cover the domestic
needswith the result that oil companies import fuel from abroad offeringmore expensive
fuels on the domestic market.

With these assumptions the total cost function for each i company is given by the
equation:

𝐶𝑖 (𝑞𝑖) = 𝐶𝑃 (𝑞𝑖) + 𝐶𝑇 (𝑞𝑖) = 𝑐𝑖 ⋅ 𝑞𝑖 +
𝑓𝑖
1+𝑟 ⋅ 𝑞𝑖 + 𝑠𝑖 , with i �{1,2} (6)

The profit functions for two players are calculated as follows:

Π1 (𝑞1, 𝑞2) = 𝑝1 ⋅ 𝑞1 − 𝐶1 (𝑞1) = (𝛼 − 𝑞1 − 𝑑 ⋅ 𝑞2) ⋅ 𝑞1 − 𝑐1 ⋅ 𝑞1 −
𝑓1

1 + 𝑟 ⋅ 𝑞1 − 𝑠1(7)

and

Π2 (𝑞1, 𝑞2) = 𝑝2 ⋅ 𝑞2 − 𝐶2 (𝑞2) = (𝛼 − 𝑞2 − 𝑑 ⋅ 𝑞1) ⋅ 𝑞2 − 𝑐2 ⋅ 𝑞2 −
𝑓2

1 + 𝑟 ⋅ 𝑞2 − 𝑠2(8)

with partial derivatives:

𝜕Π1
𝜕𝑞1

= 𝛼−𝑐1−
𝑓1

1 + 𝑟−2𝑞1−𝑑⋅𝑞2,
𝜕Π1
𝜕𝑞2

= −𝑑⋅𝑞1,
𝜕Π2
𝜕𝑞2

= 𝛼−𝑐2−
𝑓2

1 + 𝑟−2𝑞2−𝑑⋅𝑞1,
𝜕Π2
𝜕𝑞1

= −𝑑⋅𝑞2

In this study the utility function 𝑈𝑖 is used for each i company, that is given by the
following equation:

𝑈𝑖 (𝑞1, 𝑞2) = (1 − 𝜇) ⋅ Π𝑖 + 𝜇 ⋅ (Π𝑖 − Π𝑗) = Π𝑖 − 𝜇 ⋅ Π𝑗 , with 𝜇 ∈ (0, 1), i ≠ j and i, j � {1,2}
(9)

This utility function (generalized profit function) allows both players to take into
account not only their individual profits, but also the opponent player’s profits. An
example in which a player can take into account the opponent’s profits is the one who
makes the decisions (manager) is a different person from the owner of the company
and the first one to be a percentage (μ � (0,1)) unfair and paid to make decisions which
bring gains to the opponent. For the two companies it means that:

𝑈1 (𝑞1, 𝑞2) = Π1 (𝑞1, 𝑞2) − 𝜇 ⋅ Π2 (𝑞1, 𝑞2) (10)

and

𝑈2 (𝑞1, 𝑞2) = Π2 (𝑞1, 𝑞2) − 𝜇 ⋅ Π1 (𝑞1, 𝑞2) (11)

with marginal utilities the following equations:

𝜕𝑈1
𝜕𝑞1

= 𝜕Π1
𝜕𝑞1

− 𝜇 ⋅ 𝜕Π2
𝜕𝑞1

= 𝛼 − 𝑐1 −
𝑓1

1 + 𝑟 − 2𝑞1 − 𝑑 ⋅ (1 − 𝜇) ⋅ 𝑞2(12)
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and
𝜕𝑈2
𝜕𝑞2

= 𝜕Π2
𝜕𝑞2

− 𝜇 ⋅ 𝜕Π1
𝜕𝑞2

= 𝛼 − 𝑐2 −
𝑓2

1 + 𝑟 − 2𝑞2 − 𝑑 ⋅ (1 − 𝜇) ⋅ 𝑞1(13)

As it is noticed the two players follow different strategies to choose the production
quantities𝑞𝑖. The first player is supposed as bounded rational player deciding to increase
the level of adaptation in the mechanism if there is a positive marginal utility for him, or
to decrease the level of adaptation if his marginal utility is negative. According to the
existing literature this mechanism described by the following dynamical equation:

𝑞1 (𝑡 + 1) − 𝑞1 (𝑡)
𝑞1 (𝑡)

= 𝑘 ⋅ 𝜕𝑈1
𝜕𝑞1

(14)

where the positive parameter k > 0, expresses the speed of adjustment of first company
and it gives the extent 𝑞1 quantity variation of the company following a given utility signal.
Moreover it captures the fact that relative variations of the quantity are proportional to
the marginal utility. On the other hand the second player is characterized as an adaptive
player who decides with probability β to behave as a bounded rational player and with
probability 1-β as a naïve player. The second player’s expectations are described by the
dynamical equation:

𝑞2 (𝑡 + 1) = 𝛽 ⋅ (𝑞2 (𝑡) + 𝑘 ⋅ 𝑞2 (𝑡) ⋅
𝜕𝑈2
𝜕𝑞2 )

+ (1 − 𝛽) ⋅ 1
2 ⋅ (𝛼 − 𝑐2 −

𝑓2
1+𝑟 − 2𝑞2 − 𝑑 ⋅ (1 − 𝜇) ⋅ 𝑞1 (𝑡))

(15)

The final stage of the game’s construction is to find the discrete dynamical system that
contains the requirement of the players’ expectations. The discrete dynamical system
of the duopoly game if given by:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑞1 (𝑡 + 1) = 𝑞1 (𝑡) + 𝑘 ⋅ 𝑞1 (𝑡) ⋅
𝜕𝑈1
𝜕𝑞1

𝑞2 (𝑡 + 1) = 𝛽 ⋅ (𝑞2 (𝑡) + 𝑘 ⋅ 𝑞2 (𝑡) ⋅
𝜕𝑈2
𝜕𝑞2 )

+ (1 − 𝛽) ⋅ 1
2 ⋅ (𝛼 − 𝑐2 −

𝑓2
1+𝑟 − 2𝑞2 (𝑡) − 𝑑 ⋅ (1 − 𝜇) ⋅ 𝑞1 (𝑡))

(16)

This work focuses on the dynamical analysis of this discrete dynamical system of
Eq.(16) with respect to the parameters k, β and r.

2.2. The Nash Equilibrium

The Nash Equilibrium position can be calculated using the static game’s algebraic
system that is described by the following equation:

⎧⎪
⎨
⎪⎩

𝜕𝑈1
𝜕𝑞1

= 0
𝜕𝑈2
𝜕𝑞2

= 0
(17)
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The unique solution of this system is the position(𝑞1, 𝑞2) where:

𝑞1 =
2(𝛼−𝑐1)−2⋅

𝑓1
1+𝑟−𝑑⋅(1−𝜇)⋅(𝛼−𝑐2−

𝑓2
1+𝑟)

4−𝑑2⋅(1−𝜇)2 ,

𝑞2 =
2(𝛼−𝑐2)−2⋅

𝑓2
1+𝑟−𝑑⋅(1−𝜇)⋅(𝛼−𝑐1−

𝑓1
1+𝑟)

4−𝑑2⋅(1−𝜇)2

After the replacement of these values in the two equations of the dynamical game
Eq.(16) , it is verified that they are also solutions of the discrete dynamical system
and the position 𝐸∗ (𝑞∗1 , 𝑞∗2) can characterized as the Nash equilibrium position of the
dynamical game’s system where:

𝑞∗𝑖 =
2(𝛼−𝑐𝑖)−2⋅

𝑓𝑖
1+𝑟−𝑑⋅(1−𝜇)⋅(𝛼−𝑐𝑗−

𝑓𝑗
1+𝑟)

4−𝑑2⋅(1−𝜇)2 , with 𝑖 ≠ 𝑗 and i, j � {1, 2} (18)

2.3. Local stability conditions of Nash Equilibrium

The study of local stability of the 𝐸∗ Nash Equilibrium position of Eq.(16) needs the
calculation of the Jacobian matrix. The Jacobian matrix of the discrete dynamical system
of Eq.(16) is given by following table:

𝐽 =
⎡
⎢
⎢
⎢
⎣

1 + 𝑘 ⋅ (𝑞1 ⋅
𝜕2𝑈1
𝜕𝑞21

+ 𝜕𝑈1
𝜕𝑞1 ) 𝑘 ⋅ 𝑞1 ⋅

𝜕2𝑈1
𝜕𝑞1𝜕𝑞2

𝑘 ⋅ 𝛽 ⋅ 𝑞2 ⋅
𝜕2𝑈2
𝜕𝑞2𝜕𝑞1

− 1
2 ⋅ 𝑑 ⋅ (1 − 𝜇) ⋅ (1 − 𝛽) 𝛽 + 𝑘 ⋅ 𝛽 ⋅ (𝑞2 ⋅

𝜕2𝑈2
𝜕𝑞22

+ 𝜕𝑈2
𝜕𝑞2 )

⎤
⎥
⎥
⎥
⎦

(19)

and the Jacobian matrix of the Nash Equilibrium position 𝐸∗ is described as follows:

𝐽 (𝐸∗) =
⎡
⎢
⎢
⎢
⎣

1 + 𝑘 ⋅ 𝑞∗1 ⋅
𝜕2𝑈1
𝜕𝑞21

𝑘 ⋅ 𝑞∗1 ⋅
𝜕2𝑈1
𝜕𝑞1𝜕𝑞2

𝑘 ⋅ 𝛽 ⋅ 𝑞∗2 ⋅
𝜕2𝑈2
𝜕𝑞2𝜕𝑞1

− 1
2 ⋅ 𝑑 ⋅ (1 − 𝜇) ⋅ (1 − 𝛽) 𝛽 + 𝑘 ⋅ 𝛽 ⋅ (𝑞

∗
2 ⋅

𝜕2𝑈2
𝜕𝑞22

+ 𝜕𝑈2
𝜕𝑞2 )

⎤
⎥
⎥
⎥
⎦

(20)

with

𝑇 𝑟 (𝐽) = 1 + 𝛽 − 2𝑘 ⋅ 𝑞∗1 − 2𝑘 ⋅ 𝛽 ⋅ 𝑞∗2 (21)

and

𝐷𝑒𝑡 (𝐽) = 𝛽−2𝑘⋅𝛽⋅𝑞∗1−
1
2𝑘⋅(1 − 𝛽)⋅𝑑2⋅(1 − 𝜇)2⋅𝑞∗1−2𝑘⋅𝛽⋅𝑞∗2+𝑘2⋅𝛽 [4 − 𝑑2 ⋅ (1 − 𝜇)2]⋅𝑞∗1 ⋅𝑞∗2 (22)

The Nash Equilibrium position is locally asymptotically stable if the following conditions
are hold simultaneously [18], [15], [20]:

(𝑖) ∶ 1 − 𝐷𝑒𝑡(𝐽 ) > 0

(𝑖𝑖) ∶ 1 − 𝑇 𝑟(𝐽) + 𝐷𝑒𝑡(𝐽 ) > 0

(𝑖𝑖𝑖) ∶ 1 + 𝑇 𝑟(𝐽) + 𝐷𝑒𝑡(𝐽 ) > 0

(23)
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The inequality (i) gives:

1 − 𝐷𝑒𝑡(𝐽 ) > 0 ⇔

⇔ 1−𝛽+2𝑘⋅𝛽⋅𝑞∗1+
1
2𝑘⋅(1 − 𝛽)⋅𝑑2⋅(1 − 𝜇)2⋅𝑞∗1+2𝑘⋅𝛽⋅𝑞∗2+𝑘2⋅𝛽⋅[4 − 𝑑2 ⋅ (1 − 𝜇)2]⋅𝑞∗1 ⋅𝑞∗2 > 0(24)

That is the 1𝑠𝑡 local stability condition.

It’s easy to prove that the second inequality (ii) is always satisfied because:

1 − 𝑇 𝑟(𝐽) + 𝐷𝑒𝑡(𝐽 ) > 0 ⇔ 𝑘 ⋅ 𝑞∗1 (2𝑘 ⋅ 𝛽 ⋅ 𝑞∗2 + 1 − 𝛽) ⋅ [4 − 𝑑2 (1 − 𝜇)2] > 0

The third inequality (iii) gives:

1 + 𝑇 𝑟(𝐽) + 𝐷𝑒𝑡(𝐽 ) > 0 ⇔

⇔ 2𝑘2 ⋅ 𝛽 ⋅ [4 − 𝑑2 ⋅ (1 − 𝜇)2] ⋅ 𝑞∗1 ⋅ 𝑞∗2 − 𝑘 ⋅ 𝑞∗1 [4 + 4𝛽 + 𝑑2 ⋅ (1 − 𝜇)2 ⋅ (1 − 𝛽)]

−8𝑘 ⋅ 𝛽 ⋅ 𝑞∗2 + 4 + 4𝛽 > 0(25)

That is the 2𝑛𝑑 local stability condition of the Nash Equilibrium position.

Proposition 1:

The Nash equilibrium position 𝐸∗ = (𝑞∗1 , 𝑞∗2) of the discrete dynamical system of

Eq.(16) is locally asymptotically stable if:

1−𝛽+2𝑘⋅𝛽 ⋅𝑞∗1+
1
2𝑘⋅(1 − 𝛽)⋅𝑑2 ⋅(1 − 𝜇)2 ⋅𝑞∗1+2𝑘⋅𝛽 ⋅𝑞∗2+𝑘2 ⋅𝛽 ⋅[4 − 𝑑2 ⋅ (1 − 𝜇)2]⋅𝑞∗1 ⋅𝑞∗2 > 0

and

2𝑘2 ⋅𝛽 ⋅[4 − 𝑑2 ⋅ (1 − 𝜇)2]⋅𝑞∗1 ⋅𝑞∗2−𝑘⋅𝑞∗1 [4 + 4𝛽 + 𝑑2 ⋅ (1 − 𝜇)2 ⋅ (1 − 𝛽)]−8𝑘⋅𝛽 ⋅𝑞∗2+4+4𝛽 > 0

where

𝑞∗1 =
2 (𝛼 − 𝑐1) − 2 ⋅ 𝑓1

1+𝑟 − 𝑑 ⋅ (1 − 𝜇) ⋅ (𝛼 − 𝑐2 −
𝑓2
1+𝑟)

4 − 𝑑2 ⋅ (1 − 𝜇)2

and

𝑞∗2 =
2 (𝛼 − 𝑐2) − 2 ⋅ 𝑓2

1+𝑟 − 𝑑 ⋅ (1 − 𝜇) ⋅ (𝛼 − 𝑐1 −
𝑓1
1+𝑟)

4 − 𝑑2 ⋅ (1 − 𝜇)2

2.4. Numerical simulations

In this subsection some numerical simulations focusing on the parameters k, β and r
are presented to verify the previous algebraic results about the local stability conditions
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of the Nash Equilibrium position and to reveal the system’s chaotic behavior that is
appeared when the game’s parameters take values outside their stability spaces. At
first 2D and 3D stability regions between these parameters are presented. With respect
to each one of these parameters the bifurcations diagrams, strange attractors and
sensitive dependence on initial conditions are plotted.

2.4.1. Numerical simulations focusing on the parameter k

The Figure 16 shows the 3D local stability region of the three main game’s parameters,
the parameter k (players’ speed of adjustment), the parameter β (second player’s
adaptation probability) and the parameter r (percentage domestic energy adequacy)
setting specific values to the other parameters as follows: α = 5, c1 = 1, c2 = 1.3, f1 = 0.5,
f2 = 0.7, d = 0.5 and μ = 0.5.

Figure 1: 3D Stability region of the Nash Equilibrium of Eq.(16) between the parameters k, r and β.

To make the numerical simulations focusing on the parameter k, specific values for
the other parameters are choosing. For example setting the values of the parameters:
α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, d = 0.5, μ = 0.5 and r = 0.1, it gives the following
Nash Equilibrium position:

𝐸∗ = (𝑞∗1 , 𝑞∗2) ≃ (1.61 , 1.33) (26)
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The stability conditions focusing on the parameters k and β become as:

8.43 ⋅ 𝑘2 ⋅ 𝛽 − 5.83 ⋅ 𝑘 ⋅ 𝛽 − 0.05 ⋅ 𝑘 + 𝛽 − 1 < 0(27)

and

16.86 ⋅ 𝑘2 ⋅ 𝛽 − 16.98 ⋅ 𝑘 ⋅ 𝛽 − 6.54 ⋅ 𝑘 + 4 ⋅ 𝛽 + 4 > 0(28)

In Figure 2 the region of common solutions of Eq.(27) and Eq.(28) is plotted. A useful
result for the economists is that a space of local stability is created where the Nash
Equilibrium 𝐸∗ is locally asymptotically stable for every value of the parameters β while
the values of the parameter k belong to a close interval.

Figure 2: Stability region of the Nash Equilibrium of Eq.(16) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, d =
0.5, μ = 0.5 and r = 0.1.

Choosing a specific value for the parameter β = 0.3, the local stability conditions
becomes as follows:

k � (0,0.99) (1𝑠𝑡 stability condition) and k � (0,0.6) (2𝑛𝑑 stability condition)

with common solutions:

k � (0,0.6) (29)

that is the final local stability condition of the Nash Equilibrium position for these
parameters’ values.

This algebraic result is verified by stability region between the parameter k (hori-
zontal axis) and the parameter β (vertical axis) that is plotted in Figure 2. Also, the
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bifurcation diagrams (Fig.3 and Fig.4) show that there is locally asymptotically stable
Nash Equilibrium position with coordinates 𝑞∗1 ≃ 1.61 and 𝑞∗2 ≃ 1.33 for values of the
parameter k lower than 0.60 and after this value the position E∗ becomes unstable
through period-doubling bifurcation diagrams and for larger values of the parameter k,
complex dynamics behavior is observed such as cycles of higher order and chaos.

           

Figure 3: Bifurcation diagrams with respect to the parameter k against the variables 𝑞∗1 (left) and 𝑞∗2 (right)
with 400 iterations of the map Eq.(16) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β = 0.3, d = 0.5, μ = 0.5 and
r = 0.1.

 

 

Figure 4: The two bifurcation diagrams of Fig.3 are plotted in one.

Figure 5 shows the graphs of the same orbit (strange attractors) and Lyapunov
numbers’ diagram of the orbit of (0.1,0.1) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7,
β = 0.3, d = 0.5, μ = 0.5, r = 0.1 and k = 0.9. These results show that when all parameters
are fixed and only k is varied the structure of the game becomes complicated through
period doubling bifurcations, more complex bounded attractors are created which are
aperiodic cycles of higher order or chaotic attractors.

To demonstrate the sensitivity on initial conditions of the system Eq.(16), two orbits
with initial points (0.1,0.1) and (0.101,0.1), respectively are computed. Figure 6 shows
sensitive dependence on initial conditions for x-coordinate of the two orbits, for the
system Eq.(16), plotted against the time with the parameter values. As in first case

DOI 10.18502/kss.v8i1.12646 Page 182



EBEEC

              

Figure 5: Phase portrait (strange attractor) (left) and Lyapunov numbers (right) of the orbit of (0.1,0.1) with
8000 iterations of the map Eq.(16) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β = 0.3, d = 0.5, μ = 0.5, r = 0.1
and k = 0.9.

also, here at the beginning the time series are indistinguishable; but after a number of
iterations, the difference between them builds up rapidly.

        

Figure 6: Sensitive dependence on initial conditions for q1 -coordinate plotted against the time: the orbit
of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(16) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 =
0.7, β = 0.3, d = 0.5, μ = 0.5, r = 0.1 and k = 0.9.

2.4.2. Numerical simulations focusing on the parameter �

Setting specific values to the following parameters: α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 =
0.7, d = 0.5, μ = 0.5, k = 0.75 and r = 0.1, the bifurcation diagrams against the variables
q1 (Fig.7-left) and q2 (Fig.8-right) with respect to the parameter β are plotted. The larger
the values of the parameter β, period-doubling bifurcations are appeared.

               

Figure 7: Bifurcation diagrams with respect to the parameter β against the variables 𝑞∗1 (left) and 𝑞∗2 (right)
with 400 iterations of the map Eq.(16) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, d = 0.5, μ = 0.5, k = 0.75
and r = 0.1.

DOI 10.18502/kss.v8i1.12646 Page 183



EBEEC

 

 

 

Figure 8: The two bifurcation diagrams of Fig.7 are plotted in one.

For large values of the parameter β, chaotic behavior of the system is caused. As an
evidence of this chaotic behavior of the dynamical system strange attractors (Fig.9-left)
and Lyapunov numbers (Fi. 9-right)greater than 1.00 are presented for a large value of
the parameter β = 0.99.

                

Figure 9: Phase portrait (strange attractor) (left) and Lyapunov numbers (right) of the orbit of (0.1,0.1) with
8000 iterations of the map Eq.(16) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, d = 0.5, μ = 0.5, k = 0.75, r = 0.1
and β = 0.99.

A sensitivity analysis of the dynamical system of Eq.(16) on initial conditions for the
same value of the parameter β = 0.99 (outside the stability space) is presented in Figures
10. Two different initial conditions are supposed with a small difference at the first q1-
coordinate. The time series of the system with initial condition (0.1,0.1) (Fig.10-left) and
initial condition (0.101,0.1) (Fig.10-right) have the same route at the first iterations. After
a number of iterations the differences between them are appeared showing that the
dynamical system becomes sensitive on initial conditions when the parameter β takes
values outside the stability space.
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Figure 10: Sensitive dependence on initial conditions for q1 -coordinate plotted against the time: the orbit
of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(16) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 =
0.7, d = 0.5, μ = 0.5, k = 0.75, r = 0.1 and β = 0.99.

2.4.3. Numerical simulations focusing on the parameter r

Numerical simulations are presented with respect to the parameter r (percentage
domestic energy adequacy). Specific values for all other parameters are set as follows:
α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β = 0.3, d = 0.5, μ = 0.5 and k = 0.76. In Figure
11 the bifurcation diagrams against the variables of q1 (left) and q2 (left) are plotted with
respect to the parameter r. As the parameter k takes values until a specific -0.60 there
is a locally asymptotically stable Nash Equilibrium and after this value period-doubling
bifurcations are appeared and for values of the parameter k larger than 0.5 the system
starts to behave chaotically and becomes unpredictable.

 

             

Figure 11: Bifurcation diagrams with respect to the parameter r against the variables 𝑞∗1 (left) and 𝑞∗2 (right)
with 400 iterations of the map Eq.(16) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β = 0.3, d = 0.5, μ = 0.5 and
k = 0.76.

This chaotic behavior of the discrete dynamical system of Eq.(16) is visualized by
strange attractors (Fig.13-left) that are created when the parameter r takes large values
outside of the stability space as for example for r = 0.99. Also, Lyapunov numbers larger
than 1.00 are calculated (Fig. 13-right) as an evidence for the chaotic behavior of the
game’s dynamical system.
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Figure 12: The two bifurcation diagrams of Fig.11 are plotted in one.

               

Figure 13: Phase portrait (strange attractor) (left) and Lyapunov numbers (right) of the orbit of (0.1,0.1) with
8000 iterations of the map Eq.(16) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β = 0.3, d = 0.5, μ = 0.5, k =
0.76 and r = 0.99.

Finally, for these values of the parameter r (outside the stability space), make the
system sensitive on its initial conditions. This means that a small change on the coordi-
nates of initial conditions can make the system to have differentiations after a number
of iterations. The time series of q1- coordinate for two different initial conditions (0.1,0.1)
(Fig.14-left) and (0.101,0.1) (Fig.14-right) are plotted. At the beginning the time series are
indistinguishable, but after a number of iterations the difference between them builds
up rapidly.

2.5. Chaos control

As it seems for values greater than 0.60 of the parameter k, our system slowly enters
a chaotic behavior. In this section a try to control this behavior by introducing a new
parameter m � (0,1) is presented. For some values of this parameter there is a stable
Nash equilibrium and for every value of the parameter k that is outside the previous
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Figure 14: Sensitive dependence on initial conditions for q1 -coordinate plotted against the time: the orbit
of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(16) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 =
0.7, β = 0.3, d = 0.5, μ = 0.5, k = 0.76 and r = 0.99.

stability space. This parameter m introduced in discrete dynamical system of Eq.(16) as
follows:

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝑞1 (𝑡 + 1) = (1 − 𝑚) ⋅ [𝑞1 (𝑡) + 𝑘 ⋅ 𝑞1 (𝑡) ⋅
𝜕𝑈1
𝜕𝑞1 ] + 𝑚 ⋅ 𝑞1 (𝑡)

𝑞2 (𝑡 + 1) = (1 − 𝑚)

⋅ {𝛽 ⋅ (𝑞2 (𝑡) + 𝑘 ⋅ 𝑞2 (𝑡) ⋅
𝜕𝑈2
𝜕𝑞2 ) + (1 − 𝛽) ⋅ 1

2 ⋅ (𝛼 − 𝑐2 −
𝑓2
1+𝑟 − 2𝑞2 − 𝑑 ⋅ (1 − 𝜇) ⋅ 𝑞1 (𝑡))}

+𝑚 ⋅ 𝑞2 (𝑡) (30)

The new stability conditions are formulated by the following proposition:

Proposition 2:

The Nash equilibrium position 𝐸∗ = (𝑞∗1 , 𝑞∗2) of the discrete dynamical system of

Eq.(30) is locally asymptotically stable if:

2𝛽 ⋅ 𝑘2 ⋅ (1 − 𝑚)2 [4 − 𝑑2 ⋅ (1 − 𝜇)2] ⋅ 𝑞∗1 ⋅ 𝑞∗2 − 𝑘 ⋅ (1 − 𝑚)

⋅ [8 ⋅ (𝛽 + 𝑚 − 𝛽 ⋅ 𝑚) − 4 + 𝑑2 ⋅ (1 − 𝜇)2 ⋅ (1 − 𝛽) ⋅ (1 − 𝑚)] ⋅ 𝑞∗1−

−4𝑘 ⋅ 𝛽 ⋅ (1 − 𝑚) ⋅ 𝑞∗2 + 4 (𝛽 + 𝑚 − 𝛽 ⋅ 𝑚 − 1) < 0(31)

and

2𝛽 ⋅ 𝑘2 ⋅ (1 − 𝑚)2 [4 − 𝑑2 ⋅ (1 − 𝜇)2] ⋅ 𝑞∗1 ⋅ 𝑞∗2 − 𝑘

⋅ (1 − 𝑚) ⋅ [8 ⋅ (𝛽 + 𝑚 − 𝛽 ⋅ 𝑚) + 𝑑2 ⋅ (1 − 𝜇)2 ⋅ (1 − 𝛽) ⋅ (1 − 𝑚)] ⋅ 𝑞∗1−

−8𝑘 ⋅ 𝛽 ⋅ (1 − 𝑚) ⋅ 𝑞∗2 + 8 (𝛽 + 𝑚 − 𝛽 ⋅ 𝑚) > 0(32)
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2.5.1. Numerical simulations focusing on the parameter m

The Figure 15 shows the stability region between the parameters k (horizontal axis)
and the parameter m (vertical axis) for the specific values of the other parameters as
follows: α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β = 0.3, d = 0.5, μ = 0.5 and r = 0.1. As it
clearly seems this new control parameter m creates a local stability space in which this
parameter allow the Nash Equilibrium to remain in local stability for every value of the
parameter k (speed of adjustment).

 

Figure 15: Stability region of the Nash Equilibrium of Eq.(30) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β =
0.3, d = 0.5, μ = 0.5 and r = 0.1.

For example if the parameter k takes the value of 0.90 (outside of the primary stability
space), then the local stability space focusing to the parameter m is m � (0 , 0.30). This
result is verified by the Figure ?? where the bifurcation diagrams against the production
quantities 𝑞∗1 (left) and 𝑞∗2 (right) with respect to the parameter m are plotted for α = 5, c1 =
1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β = 0.3, d = 0.5, μ = 0.5, r = 0.1 and k = 0.9 are shown. It is clear
that as the values of the parameter m get larger and larger, after a limit of these values
the Nash Equilibrium becomes locally asymptotically stable. As the parameter m takes
values lower than 0.30, the 𝐸∗ position lost its local stability and for even lower values of
the parameter m, the discrete dynamical system becomes unstable and unpredictable
through doubling period bifurcations.

Strange attractors are created and Lyapunov numbers larger than 1.00 are computed
for small values of the parameter m outside the stability space. For example setting the
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Figure 16: Bifurcation diagrams with respect to the parameter m against the variables 𝑞∗1 (left) and 𝑞∗2 (right)
with 400 iterations of the map Eq.(30) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β = 0.3, d = 0.5, μ = 0.5, r =
0.1 and k = 0.9.

 

Figure 17: The two bifurcation diagrams of Fig.15 are plotted in one.

value of 0.05 to the parameter m and all other parameters have the same fixed values:
α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β = 0.3, d = 0.5, μ = 0.5, r = 0.1 and k = 0.9, the
strange attractor of Figure 18 (left) is appeared and the Lyapunov numbers’ diagram is
plotted if Figure 18 (right). As it seems the Lyapunov numbers are clearly larger than
1.00 giving an evidence for chaos.

       

Figure 18: Phase portrait (strange attractor) (left) and Lyapunov numbers (right) of the orbit of (0.1,0.1) with
8000 iterations of the map Eq.(30) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 = 0.7, β = 0.3, d = 0.5, μ = 0.5, r =
0.1, k = 0.9 and m = 0.05.
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Finally, the Figures 19 show that when the values of the parameter m are outside of
its stability region, the dynamical system behaves chaotically. For these values of the
parameter m, only a small change on the initial conditions can bring large differentiations
to the system’s behavior after a number of iterations.

     

 

Figure 19: Sensitive dependence on initial conditions for q1 -coordinate plotted against the time: the orbit
of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(30) for α = 5, c1 = 1, c2 = 1.3, f1 = 0.5, f2 =
0.7, β = 0.3, d = 0.5 μ = 0.5, r = 0.1, k = 0.9 and m = 0.05.

3. CONCLUSION

This study, contains the dynamics of a nonlinear discrete-time Cournot-type duopoly
game, where the players have heterogeneous expectations based on the marginal
utilities through a discrete dynamical system. The stability of equilibrium points, bifur-
cations and chaotic behavior are investigated. It is proved that higher values of the
parameters k (speed of adjustment), β (second player’s adaptation probability) and r
(percentage domestic energy adequacy) may destabilize the local stability of Nash
equilibrium position and cause a chaotic behavior for the system, through period-
doubling bifurcation. The chaotic features are justified numerically via presenting Lya-
punov numbers, strange attractors and sensitive dependence on initial conditions. This
chaotic structure controlled introducing a new parameter m. A new stability space
for the control parameter m is found, in which the Nash equilibrium becomes locally
asymptotically stable of every value of the parameter k. Finally, a useful property is
shown that for small values of the speed of adjustment the Nash equilibrium is locally
asymptotically stable for every value of the adaptation parameter β.
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