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Abstract.
Geothermal power plants are crucial for sustainable energy generation, necessitating
the reliable maintenance of their operating assets. This research proposes an
approach for asset maintenance through anomaly detection using the Locality-
Sensitive Hashing (LSH) algorithm. The accuracy and coverage of traditional anomaly
detection approaches in geothermal power plants may be constrained by sensor
monitoring systems. The LSH algorithm is used to improve detection skills and get
a full understanding of the state of important assets. The proposed method utilizes
historical sensor data collected during geothermal power plant operations. This data
is transformed into hash codes using LSH, effectively capturing similarities between
various operational states and asset conditions. By comparing the hash codes of the
current operational state with a library of precomputed hash codes representing typical
operating conditions, the LSH algorithm can identify deviations indicating potential
irregularities. This facilitates early detection of anomalies, even in large-scale databases,
enabling prompt maintenance interventions. The application of anomaly detection using
the LSH algorithm provides benefits such as improved asset maintenance planning,
reduced downtime, and increased operational safety. By leveraging data-driven
analysis and the effectiveness of LSH, geothermal operators can detect faults early,
enabling prompt interventions and optimizing reliability and efficiency. By leveraging
historical sensor data and the efficient similarity approximation capabilities of LSH,
the proposed approach enables early diagnosis of problems, improving maintenance
planning and optimizing geothermal operations.

Keywords: geothermal assets, locality-sensitive hashing, asset condition, fault
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1. Introduction

Geothermal is one of the energy sources that are relied upon to achieve Indonesia’s

23% renewable energy mix by 2025 [1]. The government plans to develop 1445 MW

of Geothermal Power Plant from 2021 - 2025 [2]. Yet Geothermal Projects were con-

stantly facing challenges both in exploration drilling [3] and social acceptance [4]. Still,
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Geothermal Power Plants are preferable to PLN due to their base load 24-hour dispatch

nature which is expected to generate stable electricity [5]. Therefore, their consistent

functioning is key to ensuring a steady and predictable energy supply. Physical Asset

Management is one of the frameworks that allow physical assets such as Geothermal

Plant to be optimized. One of the key building blocks of Asset Management is Lifecycle

Delivery where when an asset is acquired or commercially operated, it will be managed

through operation and maintenance [6]. It is known that Power Plant operating capacity

is decreased by almost 35% due to downtime and hidden losses [7]. Therefore, anomaly

detection is an important part of asset management in power plants because it allows

possible problems to be identified early on before they cause substantial losses or

downtime.

There are several methods of anomaly detection. Through condition-based main-

tenance (CBM), the most common technologies are oil analysis, vibration analysis,

and infrared thermography [9]. However, CBMs are periodic and may not cover early

anomalies that could potentially be identified by using real-time data.

The role of Machine Learning (ML) comes with ingesting data on power plant operat-

ing conditions and has been explored and implemented intensively by power plant enti-

ties [10]. Several algorithms are used for energy efficiency and forecasting maintenance

schedules. For anomaly detection, recognizing the pattern of operating parameters is

the baseline to gain insight and decide which deviation is considered an anomaly or

not. A conventional machine learning model such as clustering usually relies on data

patterns between input and output to obtain pattern recognition. However, when pre-

sented with high-dimensional fault data with unclear output and highly interdependent

input, it would compensate for interpretation speed and accuracy [11].

Locality-sensitive hashing (LSH) is a potential algorithm optimized for anomaly detec-

tion in geothermal power plants, as it can effectively capture similarities between

various operational states and asset conditions. LSH is a method that compresses high-

dimensional data into one-dimensional data to detect residuals for the whole dataset

[12]. This allows the system owner to look at single-value residuals to detect a failure

in the system or equipment model while gaining insight into the biggest contributor.

Resulting in faster anomaly detection. This paper will present the use case of LSH in

anomaly detection of Patuha Geothermal Power Plants which leads to forced outage

events.
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2. Literature Review

There are several studies and implementations regarding anomaly detection with

machine learning (ML). Both are using supervised and unsupervised learning [13].

Supervised methods such as random forest [14] are highlighted would be more difficult

without proper data ingestion. Conventionally, unsupervised learning relied upon to

detect patterns in data is clustering. Yet clustering faces predictive accuracy challenges

in high-dimensional data [15]. While other clustering methods such as OPTICS are facing

accuracy challenges during anomaly detection [16].

Using a supervised neural network, a thermal power plant successfully detected

anomaly readings with a slight increase in feedwater flow and pressure decrease

[17]. Although the result is satisfying in terms of accurately detecting slight changes

in data, the paper didn’t provide enough information on the result interpretation. This is

important since in power plant system operation, there are a lot of parameters related

to each other. For example, Table 1 shows that a turbine-generator efficiency formula

involves six dynamic transmitter data (parameter). Figure 1 explains the relationship

between the efficiency losses and its building parameter.

Table 1: Turbine-Generator Efficiency Parameter (DiPippo, 2016) [18].

No Value Parameter Data Source

A Steam Turbine Power
(kW) Mass Flowrate x (h4 – h5) Calculated

Inlet Turbine Mass Flowrate
(T/h) Flow Transmitter

Inlet Enthalpy (h4): Calculated from:

Inlet Pressure (Barg) Pressure Transmitter

Inlet Temperature (∘C) Temperature
Transmitter

Outlet Enthalpy (h5): Calculated from:

Outlet Pressure (Barg) Pressure Transmitter

Outlet Temperature (∘C) Temperature
Transmitter

B Gross Generator Power
(kW) Active Power (kW) kWh Meter

D Generator Efficiency 𝐵
𝐴 Calculated

Neural network, random forest, and clustering are black-box model which does not

use any particular prior knowledge of the data relationship to provide a prediction

[19]. Hence, a black-box model of turbine-generator efficiency would be able to find

anomalies such as efficiency losses. However, the model won’t be able to explain
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Figure 1: Potential parameters to address during efficiency anomaly.

where the losses came from to the domain expert due to the mathematical complexities

involved [20].

Due to this challenge, the machine learning models no longer emphasized just based

on its predictive accuracy, but also descriptive accuracy. Hence as described in Figure

2, an interpretable model or white-box model will include a post hoc analysis such as

histograms and scatter plots to accurately describe the data relationship [21].

Figure 2: Interpretable (White-Box) Machine Learning includes Post-Hoc Algorithm [21].

There are various advantages to using white-box algorithms. First, they are more

accountable since white-box algorithms are transparent in how they process data

input by giving in weights and relationships. Second, white box algorithms are more

justifiable because the process can be adjusted to match the demands of a specific

domain challenge. Third, because white-box algorithms also provide correlation and

contribution between their input, it is easier to interpret why the algorithm generates

the predictions [22]. Interpretability is the main component of explainable AI which

embody five different perspective: the right to explanation, trust, model improvement,

and discovering novel concepts [23].

Locality Sensitive Hashing (LSH) is a model that works well to interpret high-

dimensional data [24]. The approach is based on the notion that comparable objects

are likely to be assigned to the same bucket by splitting the high-dimensional space
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into several smaller buckets. The technique accomplishes this by using a hash function

to convert each object in the high-dimensional space into a bucket. Since comparable

things are likely to have the same hash value, the hash function is created in this way.

The algorithm can run a similarity search after the items have been placed in buckets

by simply comparing the things in the same bucket. Compared to comparing every

object in the high-dimensional space to every other object, this is substantially faster.

The authors of the research demonstrate that even with limited data, their LSH algorithm

can perform well for similarity search in high-dimensional domains [24]. The capability

of LSH for anomaly detection both in synthetic and real datasets is comparable to other

available methods [25].

2.1. Hypotheses

In this paper, the LSH algorithm will be tested to detect both prediction accuracy and

descriptive accuracy. The process of detecting the anomaly of an equipment or system is

shown by overall model residuals (OMR) that of clustering. Then it would create a feature

selection that ranks sensor contribution and fault diagnosis of the OMR. In short, the

LSH algorithm must be able to: predict changes in OMR and predict contributors to the

changes.

3. Methodology Research

The model development method used is based on anomaly detection in an integrated

parameter system [25] which involves historical data collection, data pre-processing

(configuration), statistical learning (training), model evaluation (testing), and model fine-

tuning (see Figure 3).

Historical data collection: The first step is to gather a dataset that is relevant to

the problem that the model is trying to solve. The dataset should be large enough

and representative of the real-world data that the model will be used. The datasets

also be used as a baseline of normal operating conditions. This means there must be

incorporation of experts that justify the data.

Data pre-processing (configuration): Once the dataset has been gathered, the next

step is to configure the ML model by doing data pre-processing. This involves selecting

the appropriate model architecture and hyperparameters. The model architecture is the

overall structure of the model, while the hyperparameters are the tuning parameters
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that control the learning process. This would also involve certain data cleansing such

as filtering, trimming, and clearing outliers.

Statistical learning (training): Once the model has been configured, it needs to be

trained on the dataset. This involves feeding the dataset to the model and allowing it

to learn the patterns in the data.

Model evaluation (testing): Once the model has been trained, it needs to be evaluated

on a held-out test set. This helps to assess the performance of the model on unseen

data and to identify any potential areas for improvement.

Model fine tuning (re-training): By evaluation, the model should be re-cleansed if it

fails in anomaly detection. If the model failed to describe failure or sensor contribution

accordingly, the model data inputs would need to be re-weighted.

Figure 3: The process of Geothermal Power Plant Model Development.

3.1. Data Gathering

The quality and quantity of the data used to train an ML model have a significant impact

on its performance. Therefore, it is important to gather a dataset that is relevant, large

enough, and representative of the real-world data that the model will be used. When

gathering data, it is important to consider the following factors:

1. Relevance: The data should be relevant to the problem that the model is trying to

solve. For example, if the model is trying to predict the anomaly of an electric motor, then

the data present should be the parameters of the motor such as winding temperatures,

electrical current, and terminal voltage.
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2. Quantity: The dataset should be large enough to allow the model to learn the

patterns in the data. The minimum dataset size depends on the complexity of the

problem and the type of ML model being used.

3. Representativeness: The dataset should be representative of the real-world data

that the model will be used on. This means that the dataset should include a variety of

different examples, and it should not be biased towards any subgroup.

In this particular paper, data from the power plant condensing system will be used

with its dependent parameters. The data will be limited by the number of sensors

gathered for the unit. Outliers will also be filtered out so the model can fit with the

normal operation of the system. The model involves several pieces of equipment each

of them, as seen as Table 2:

Table 2: Equipment and Parameter of Circulating Water System.

No Equipment Parameter Data Source Data Type

1 Main Condenser Main Condenser Level
(mm) Level Transmitter Dynamic

Main Condenser Pres-
sure (Barg)

Pressure
Transmitter Dynamic

Main Condenser Tem-
perature (∘C)

Temperature
Transmitter Dynamic

2 Condenser Spray
Valve Valve Position (%) Position Indicator Dynamic

Valve Command (%) Logic Diagram Dynamic

3 Hot Well Pump Discharge Pressure
(Barg)

Pressure
Transmitter Dynamic

Motor Current (A) Amperemeter Dynamic

LCV Position (%) Position Indicator Dynamic

3.2. Model Configuration

Once the dataset has been gathered, the next step is to configure the ML model.

This involves selecting the appropriate model architecture and hyperparameters. The

model architecture is the overall structure of the model. It determines how the model

will learn from the data and how it will make predictions. Since LSH leveraging the

white box model, the model would be configured with pre-knowledge of hot well pump

failure mode which will be mapped with its sensor causal relationship such as increase,

decrease, and constant such as Table 3. Themodel would also involve weighting sensor

contribution to certain faults.
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Table 3: Fault Diagnostic relationship input.

Name

COOLING
WATER
FLOW TO
CONDENSER

CONDENSER
VAC

CONDENSER
TEMPERATURE

CONDENSER
SPRAY VALVE
POSITION

CONDENSER
LEVEL

HOTWELL
PUMP B
DISCHARGE
CV POS

HOTWELL
PUMP A
DISCHARGE
CV POS

Spray Valve
Fail to Open

↓ ↑ ↑ ↓ ↓

Temperature
Transmitter
Fail to
Function

↑↓

Vessel High
Temperature
(PROD)

↑

Condenser
High Level

↓ ↓ ↑ ↓ ↓

The data that will be used for training are from 13 - 31 August 2023 with intervals

of 5 minutes. Since training data are the baseline or normal reference of operating

conditions, any anomaly present during training is cleansed so it can be verified during

model evaluation. As shown in Figure 4, the anomaly present on the condenser spray

valve is cleansed. During training, known operation intervention will create a bias toward

the model sensor contribution. Due to this, it is important to choose a date interval

without any intervention.

Figure 4: Data without cleansing (left), data used for model training (right).

3.3. Model Training

Once the model has been configured, it needs to be trained on the dataset. This

involves feeding the dataset to the model and allowing it to learn the patterns in the

data. The pattern that the model learns is the “normal” operating pattern so the model

will fit prediction and residuals with normal reference as the baseline. The data is then

clustered to get a working model that will be used to test data.
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3.4. Model Evaluation

Once the model has been trained, it needs to be evaluated on a held-out test set.

This helps to assess the performance of the model on unseen data and to identify any

potential areas for improvement. In this test, the model will be presented with actual

data from 13 August – 01 September 2023 (without cleansing) to detect anomalies in

the condenser spray valve (see Figures 5 and 6). This component was known to be the

cause of plant forced outage on September 1, 2023.

Figure 5: Actual trend of spray valve decrease.

Figure 6: Simple 5 Whys analysis of Trip event during September 1, 2023.

First, the model needs to detect earlier by using overall model residuals (OMR) which

are based on the regular RMSE formula:

𝑂𝑀𝑅 (%) =
√√√
⎷

𝑛

∑
𝑖=1

(𝑦′𝑖 − 𝑦𝑖)
𝑛 (1)

𝑦′𝑖 = Predicted value

𝑦𝑖 = Actual value

𝑛 = Number of observations (parameters)

Second, the model needs to be able to predict the sensor contributions of the OMR.

This would involve using a statistical histogram or Pareto analysis. To be descriptive
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accurate, the model would have to predict the highest sensor contributor as the Con-

denser Spray Valve. And fault diagnostic would predict the highest fault to be the

condenser spray valve fail to open.

3.5. Model Fine Tuning

If the model is not performing well on the evaluation set, it may need to be re-tuned.

This involves adjusting the model architecture or hyperparameters and then training the

model again. The process of re-tuning a model can be iterative, and it may be necessary

to retune the model several times before it achieves the desired performance. However,

if the model is showing the desired result, the model is not necessarily fine-tuned. The

practice of fine tuning is usually done after maintenance of equipment which makes the

equipment run in different baselines.

4. Results and Discussion

The model of the condensing system resulted in the overall residual model (OMR) which

summarizes all the observations in each sensor into a single feature. The feature then

generated an area of predicted value in which tolerable around 5% deviation to the

OMR (see Figure 7).

Figure 7: OMR profile of test data (13 August – 01 September 2023).
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Figure 8 shows OMR above 5% during 13 – 23 August 2023. This means the model

has an accurate prediction of anomaly detection.

Figure 8: Shows OMR above 5% at 13- 23 August 2023.

Figure 9 shows that during the period of 13 – 23 August 2023, the highest sensor

contributor is the condenser spray valve at 49.6%. This would validate the model’s

descriptive accuracy. Following with Figure 10 detects 47.8% of fault potentially from

Spray Valve Fail to Open.

Figure 9: Sensor Contribution.

Figure 10: Predicted fault diagnosis at 13 – 23 August 2023.
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Figure 11 shows the OMR increase before the forced outage event on 01 September.

In this anomaly finding, the signal contribution is dispersed evenly with the highest

contributor still coming from the condenser spray valve. While the predicted fault leaned

towards the condenser’s high level. The close gap between the contributions means the

analysis is still descriptive accurate because it shows accountable results that the sensor

deviation and fault diagnosis are inconclusive. Further analysis by the domain expert

is indeed needed but fine-tuning is not necessary. Figure 12 shows signal contribution

near the forced outage event, and Figure 13 depicts predicted fault diagnosis near trip

event.

Figure 11: Shows OMR above 5% at 31 August – 01 September (before outage).

Figure 12: Signal contribution near the forced outage event.

Figure 13: Predicted fault diagnosis near trip event.

DOI 10.18502/kss.v9i32.17439 Page 250



1st ICCDBS

5. Conclusion

The development of a white-box model aims to show an accountable, justifiable, and

interpretable result. That is why a white-box model has to be directed by subject

matter experts (SMEs) and domain information to be deployed. One of the white-box

methods that are implemented in this paper is locality-sensitive hashing (LSH). The LSH

model in Patuha Geothermal Power Plant can successfully detect anomalies earlier

before the plant shutdown. Not only predicting the anomalies, but the model also could

describe the parameter that most contributes to the anomaly and diagnose anomaly to a

certain fault condition. This contribution and diagnosis are developed from the data pre-

processing process which involves weighting and creating relationships between data

before deploying the model. The key to accurate prediction is actually in the weighting

and relationship of the data which is done by subject matter experts (SMEs) from the

domain.

As a white-box model, the model should have to be evaluated and fine-tuned by the

SMEs frequently. The main evaluation parameter monitored in the LSH model is overall

model residuals (OMR) and its sensor contribution (Pareto analysis). The usage of OMR is

helpful to give SMEs a preliminary insight into what’s happening in the plant/equipment.

The Pareto analysis then would help to find the sensor contribution of the anomaly.

However, SMEs also need to verify what is happening in the field. As the interpreter of

machine learning, the responsibility lies on its reader to evaluate the bias.

For further research, evaluation and comparison analysis are needed to benchmark

model results with algorithms such as independent component analysis (ICA), clustering,

and other black-box methods. Furthermore, this model would be potentially expanded

into the sub-surface of geothermal fields. Like other renewable energies, geothermal

would depends heavily on its resources which in practice, is usually done in engineering

technologies in the form of well simulations that result in well intervention. As the

capacity assurance of well, the early detection would help detect faults in the subsurface

such as casing leaks, brine carry-over, and equipment fishing.
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