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Abstract
Population-based swarm or evolutionary computation algorithms in optimization
are attracted the interest of the researchers due their simple structure, optimization
performance, easy-adaptation. Binary optimization problems can be also solved by
using these algorithms. This paper focuses on solving large scale binary optimization
problems by using Tree-Seed Algorithm (TSA) proposed for solving continuous
optimization problems by imitating relationship between the trees and their seeds
in nature. The basic TSA is modified by using xor logic gate for solving binary
optimization problems in this study. In order to investigate the performance of the
proposed algorithm, the numeric benchmark problems with the different dimensions
are considered and obtained results show that the proposed algorithm produces
effective and comparable solutions in terms of solution quality.

Keywords: binary optimization, tree-seed algorithm, xor-gate, large-scale
optimization

1. Introduction

Many important optimization problems can be modeled as binary optimization prob-
lem and some of them try to solve high dimensional optimization problems. The
solution of large-scale binary optimization problems is an interesting and important
research area. There are two main solution approaches in the literature: exact meth-
ods and approximate methods. The exact methods guarantee the optimal solution
but large-scale optimization problems cannot be solved in a reasonable time by
these methods. Therefore, heuristic/metaheuristic optimization or search methods
offer optimal or near optimal solutions in a reasonable time. In last decades, a lot
of population-based optimization algorithm were proposed to solve different kind
of optimization problems. TSA is one of them and it mimics relationship between
trees and seeds in nature [1] for continuous optimization. A method proposed for
solving continuous optimization problems should be adapted to binary optimization
before applying it to solve a binary optimization problem. There are some binarization
approaches in literature. Banitalebi et al. [2] have reviewed the literature and have
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made the following grouping. Transfer function [3-6], Angle modulation [7], Quantum-
inspired bits [8], Genetic operators [9], Binary operators [10], Measure of dissimilarity
[11, 12] are some modification techniques which detailed in the references.

Kashan et al. [12] introduce a binary version of ABC, called DisABC, which is used
Jaccard’s [13] coefficient of similarity. Also similarly DisDE [11] has been proposed by
Kashan et al. DisDE algorithm uses a measure of dissimilarity between binary struc-
tures. Binary Particle Swarm Optimization (BPSO) algorithm is proposed by Kennedy
and Eberhart [6]. BPSO uses sigmoid function to transform continuous values to binary
values. Binary Artificial Bee Colony (binABC) is designed with XOR logic gate by K𝚤ran
and Gündüz [14]. The binABCworks on binary space and use XOR logic gate for creating
new individuals. XOR logic gate enhances population diversity because of its design.
By inspiring [14], we used the xor logic operator in TSA for solving binary optimization
problems in this study.

T˔˕˟˘ 1: Mathematical Benchmark Functions Properties.

Name Search Range Type

Sphere [-100,100] Unimodal Separable

Rosenbrock [-10,10] Unimodal Non-Separable

Rastrigin [-5.12,5.12] Multimodal Separable

Griwank [-600,600] Multimodal Non-Separable

Ackley [-32,32] Multimodal Non-Separable

2. Tree-Seed Algorithm

Tree-Seed Algorithm (TSA) proposed by K𝚤ran [1] mimics relationship between trees
and seeds in nature. Trees and seeds correspond to solutions in an optimization prob-
lem. TSA is a population-based algorithm. Firstly trees are created by using (1).

𝑇𝑖,𝑗 = 𝐿𝑜𝑤𝑗 + 𝑟𝑖,𝑗 (𝐻𝑖𝑔ℎ𝑗 − 𝐿𝑜𝑤𝑗) (1)

where T𝑖,𝑗 is jth dimension of ith tree, r𝑖,𝑗 is uniformly random number in range of [0,
1], Low𝑗 is lower bound of jth dimension, High𝑗 is higher bound of jth dimension. Then
every iteration seeds are created by using (2) or (3).

𝑆𝑖,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝐵𝑒𝑠𝑡𝑗 − 𝑇𝑟,𝑗) (2)

𝑆𝑖,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝑇𝑖,𝑗 − 𝑇𝑟,𝑗) (3)
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T˔˕˟˘ 2: Results of XORTSA on Sphere Function with 250, 500 and 1000 Dimensions.

Sphere Function, Dimension:5 x 50bit = 250bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 8.19E-08 2.24E-04 5.21E-02 6.35E-01 1.17E+00

Pop=20 8.58E-10 9.10E-05 3.84E-02 3.37E-01 8.08E-01

Pop=30 4.78E-09 2.47E-04 2.04E-02 2.22E-01 5.90E-01

Pop=40 2.56E-08 2.25E-04 3.14E-02 2.36E-01 9.38E-01

Pop=50 2.02E-07 7.90E-04 2.50E-02 3.35E-01 6.24E-01

Sphere Function, Dimension: 10 x 50bit = 500bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 1.38E-02 7.46E+00 6.33E+01 2.20E+02 2.76E+02

Pop=20 1.81E-02 1.02E+01 8.65E+01 2.67E+02 3.56E+02

Pop=30 4.27E-02 1.25E+01 1.04E+02 2.85E+02 3.70E+02

Pop=40 1.46E-01 1.84E+01 1.14E+02 2.86E+02 4.67E+02

Pop=50 2.48E-01 2.13E+01 1.53E+02 3.10E+02 4.99E+02

Sphere Function, Dimension: 20 x 50bit = 1000bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 4.15E+01 1.22E+03 3.07E+03 4.94E+03 5.90E+03

Pop=20 9.66E+01 1.66E+03 4.15E+03 5.99E+03 7.26E+03

Pop=30 1.49E+02 2.01E+03 4.32E+03 6.81E+03 7.68E+03

Pop=40 2.27E+02 2.34E+03 4.88E+03 6.70E+03 8.36E+03

Pop=50 3.15E+02 2.50E+03 5.02E+03 7.07E+03 8.50E+03

where, S𝑖,𝑗 is jth dimension of ith seed, T𝑖,𝑗 is jth dimension of ith tree, α𝑖,𝑗 is uniformly
random number in range of [-1,1] using for scaling, Best𝑗 is jth dimension of best tree
which is obtained so far, T𝑟,𝑗 is jth dimension of rth tree and r and i must be different.
Which equation is selected for creating a seed is an issue in TSA and it is solved by a
control parameter, whose name is ST (Search Tendency). If (2) is selected, exploitation
capability is increased; otherwise exploration skill enhances. ST is determined at ini-
tialization as a number between 0 and 1. Then at every iteration, a uniformly random
number generated and is compared ST. If this random value is smaller than ST then
(2) is used for seed creation otherwise (3) is used. The number of seeds which will be
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T˔˕˟˘ 3: Results of XORTSA on Rosenbrock Function with 250, 500 and 1000 Dimensions.

Rosenbrock Function, Dimension:5x50bit=250bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 2.42E+00 2.42E+00 2.21E+00 3.05E+00 3.96E+00

Pop=20 2.23E+00 1.54E+00 1.54E+00 2.98E+00 4.10E+00

Pop=30 2.25E+00 1.58E+00 1.85E+00 2.90E+00 3.87E+00

Pop=40 1.85E+00 1.89E+00 2.03E+00 2.77E+00 3.66E+00

Pop=50 1.69E+00 1.55E+00 2.07E+00 2.87E+00 4.90E+00

Rosenbrock Function, Dimension:10x50bit=500bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 8.08E+00 2.34E+01 1.30E+02 3.47E+02 4.34E+02

Pop=20 7.86E+00 2.30E+01 1.34E+02 3.50E+02 5.88E+02

Pop=30 8.27E+00 3.06E+01 1.62E+02 3.57E+02 6.59E+02

Pop=40 8.56E+00 4.07E+01 1.91E+02 4.26E+02 7.58E+02

Pop=50 9.07E+00 5.29E+01 2.58E+02 5.00E+02 8.48E+02

Rosenbrock Function, Dimension:20x50bit=1000bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 1.33E+02 3.33E+03 1.84E+04 3.27E+04 4.78E+04

Pop=20 2.00E+02 5.38E+03 2.15E+04 4.34E+04 5.27E+04

Pop=30 3.16E+02 6.38E+03 2.69E+04 5.10E+04 6.22E+04

Pop=40 4.84E+02 8.10E+03 3.28E+04 5.42E+04 7.44E+04

Pop=50 6.26E+02 9.59E+03 3.29E+04 6.25E+04 7.77E+04

created for each tree is changeable in TSA. This is controlled properly using population
size and using (4).

𝑁𝑆𝑑 = 0.1 × 𝑁 𝑁𝑆𝑢 = 0.25 × 𝑁 (4)

where, NSd, are NSu are the lower and upper bounds for the number of seeds created
for each tree, respectively. TSA works on continuous solution space and in this work
TSA has been modified by using xor logic operator to work on binary space.
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T˔˕˟˘ 4: Results of XORTSA on Rastrigin Function with 250, 500 and 1000 Dimensions.

Rastrigin Function, Dimension:5x50bit=250bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 2.65E-03 7.57E-02 2.22E-01 8.28E-01 1.56E+00

Pop=20 3.32E-02 1.41E-02 1.74E-01 1.23E+00 2.55E+00

Pop=30 3.32E-02 3.40E-03 4.06E-01 1.46E+00 2.25E+00

Pop=40 1.15E-01 5.52E-02 7.71E-01 2.03E+00 3.00E+00

Pop=50 8.39E-02 1.05E-01 7.43E-01 2.53E+00 3.21E+00

Rastrigin Function, Dimension:10x50bit=500bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 3.58E+00 1.14E+01 2.12E+01 2.77E+01 2.93E+01

Pop=20 4.20E+00 1.26E+01 2.20E+01 2.97E+01 3.39E+01

Pop=30 5.28E+00 1.41E+01 2.43E+01 3.34E+01 3.45E+01

Pop=40 5.82E+00 1.52E+01 2.46E+01 3.01E+01 3.82E+01

Pop=50 6.63E+00 1.61E+01 2.46E+01 3.21E+01 3.75E+01

Rastrigin Function, Dimension:20x50bit=1000bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 4.03E+01 8.19E+01 1.03E+02 1.18E+02 1.27E+02

Pop=20 4.32E+01 8.71E+01 1.16E+02 1.36E+02 1.40E+02

Pop=30 4.85E+01 9.23E+01 1.17E+02 1.40E+02 1.49E+02

Pop=40 5.04E+01 9.53E+01 1.19E+02 1.37E+02 1.49E+02

Pop=50 5.30E+01 9.40E+01 1.19E+02 1.41E+02 1.51E+02

3. XOR-Based Binary Tree-Seed Algorithm

The element of {0,1} set can be assigned to the binary decision variables in binary
solution space. In the initialization of binary decision variables, 0 or 1 values can be
assigned by equal probability. This approach is fairly easy to understand. A random
number is created between 0 and 1. If this random number smaller than 0.5, binary
value is 0, otherwise binary value is 1. XOR gate is used in the seed production phase
after the trees are initialized with the binary values. Seed creation equations of basic
TSA are changed as follows:

𝑆𝑘𝑗 = {
𝑇𝑖𝑗⨁(𝐵𝑗⨁𝑇𝑟𝑗) 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑖𝑗 < 𝑆𝑇)
𝑇𝑖𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5)
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T˔˕˟˘ 5: Results of XORTSA on Griewank Function with 250, 500 and 1000 Dimensions.

Griewank Function, Dimension:5x50bit=250bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 2.23E-02 4.16E-02 1.41E-01 2.90E-01 4.35E-01

Pop=20 1.59E-02 4.73E-02 1.89E-01 2.46E-01 3.96E-01

Pop=30 2.24E-02 6.73E-02 1.56E-01 2.99E-01 3.78E-01

Pop=40 2.15E-02 7.24E-02 1.62E-01 2.73E-01 3.51E-01

Pop=50 2.31E-02 7.37E-02 1.76E-01 3.30E-01 3.90E-01

Griewank Function, Dimension:10x50bit=500bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 1.40E-01 9.58E-01 1.64E+00 2.84E+00 3.70E+00

Pop=20 1.63E-01 9.75E-01 1.68E+00 3.17E+00 4.36E+00

Pop=30 2.67E-01 1.05E+00 2.02E+00 3.53E+00 4.25E+00

Pop=40 3.45E-01 1.14E+00 2.08E+00 4.04E+00 5.08E+00

Pop=50 4.22E-01 1.21E+00 2.28E+00 4.26E+00 5.27E+00

Griewank Function, Dimension:20x50bit=1000bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 1.45E+00 1.20E+01 2.84E+01 4.47E+01 5.25E+01

Pop=20 1.84E+00 1.59E+01 3.75E+01 5.35E+01 6.36E+01

Pop=30 2.39E+00 2.01E+01 4.10E+01 5.67E+01 7.17E+01

Pop=40 2.94E+00 2.13E+01 4.59E+01 6.17E+01 7.54E+01

Pop=50 3.71E+00 2.39E+01 4.61E+01 6.40E+01 7.58E+01

S𝑘𝑗 is the jth dimension of kth seed produced for ith tree, T𝑖𝑗 is the jth dimension of ith
tree, B𝑗 is the jth dimension of best tree obtained so far, and T𝑟𝑗 is the jth dimension of
neighbor tree randomly selected from the population. The main difference between
TSA and XORTSA is the seed production equations. TSA uses (2) or (3), XORTSA uses (5)
for seed creation because while output of 2 or 3 can be continuous values, the output
of 5 is absolutely binary value.
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T˔˕˟˘ 6: Results of XORTSA on Ackley Function with 250, 500 and 1000 Dimensions.

Ackley Function, Dimension:5x50bit=250bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 3.69E-05 9.97E-03 1.14E-01 1.00E+00 1.17E+00

Pop=20 1.10E-05 3.74E-03 9.02E-02 4.51E-01 9.27E-01

Pop=30 2.97E-05 7.35E-03 1.22E-01 4.37E-01 1.14E+00

Pop=40 6.76E-05 8.09E-03 1.18E-01 5.45E-01 1.08E+00

Pop=50 3.50E-04 1.87E-02 1.61E-01 5.41E-01 1.10E+00

Ackley Function, Dimension:10x50bit=500bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 8.92E-02 2.08E+00 4.73E+00 6.65E+00 7.27E+00

Pop=20 7.93E-02 2.43E+00 5.13E+00 6.78E+00 8.12E+00

Pop=30 1.38E-01 2.79E+00 5.22E+00 7.29E+00 7.74E+00

Pop=40 2.98E-01 3.07E+00 5.67E+00 7.40E+00 8.54E+00

Pop=50 5.13E-01 3.56E+00 5.72E+00 8.52E+00 8.87E+00

Ackley Function, Dimension:20x50bit=1000bit

XORTSA ST=0.1 ST=0.2 ST=0.3 ST=0.4 ST=0.5

Pop=10 3.35E+00 9.40E+00 1.29E+01 1.43E+01 1.44E+01

Pop=20 4.25E+00 1.04E+01 1.34E+01 1.46E+01 1.55E+01

Pop=30 4.98E+00 1.13E+01 1.39E+01 1.53E+01 1.57E+01

Pop=40 5.61E+00 1.17E+01 1.40E+01 1.55E+01 1.61E+01

Pop=50 6.32E+00 1.20E+01 1.45E+01 1.58E+01 1.63E+01

4. Binary to Continuos Transformation

Before evaluating the objective function with binary values, the binary values must be
converted to continuous values with the aid of a conversion function. This transforma-
tion operation is carried out as follows:

1. Input: binary string (X),

2. Input: lower and upper bounds of solutions space (low, up),

3. Input: dimensionality (D),

4. Input: the bit size (bitSize),

5. Calculate maximum value (maxVal) calculated as 2bitSize-1,
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T˔˕˟˘ 7: Comparison of XORTSA and BPSO on Sphere Function.

BPSO XORTSA

Sphere Function, Dimension:5x50bit=250bit

Pop Mean Std Mean Std

10 3.64E-26 0.00E+00 8.19E-08 4.44E-07

20 2.81E-22 1.51E-21 8.58E-10 2.34E-09

30 1.90E-11 1.04E-10 4.78E-09 2.08E-08

40 1.31E+00 7.13E+00 2.56E-08 5.52E-08

50 1.15E-02 3.93E-02 2.02E-07 5.18E-07

Sphere Function, Dimension:10x50bit=500bit

Pop Mean Std Mean Std

10 5.62E-24 7.27E-26 1.38E-02 2.32E-02

20 2.14E-11 2.93E-21 1.81E-02 1.73E-02

30 3.27E-01 2.17E-15 4.27E-02 2.40E-02

40 5.55E+00 1.02E-11 1.46E-01 1.17E-01

50 2.00E+00 1.47E-07 2.48E-01 1.71E-01

Sphere Function, Dimension: 20x50bit=1000bit

Pop Mean Std Mean Std

10 3.05E-10 9.53E-16 4.15E+01 2.06E+01

20 1.31E+00 2.22E-09 9.66E+01 3.53E+01

30 5.48E+00 8.30E-06 1.49E+02 2.86E+01

40 5.14E+01 4.46E-03 2.27E+02 5.72E+01

50 1.10E+02 9.66E-02 3.15E+02 8.88E+01

6. Divide X into x with D dimensional,

7. Do the following operations for all x

a. Calculate decimal value (decVal) for all x

b. Calculate continuous values (conVal) by conVal=low+(up-low)*(decVal/maxVal)

8. Output: continuous valued vector of x (conVal).

In our work bit size is taken as 50 due to floating point precision. Below you see an
example how this transformation operation is done.

1. X= 1101 100111,

2. low=-100, up=100,
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T˔˕˟˘ 8: Comparison of XORTSA and BPSO on Rosenbrock Function.

BPSO XORTSA

Rosenbrock Function, Dimension:5x50bit=250bit

Pop Mean Std Mean Std

10 1.53E+02 2.33E+02 2.42E+00 8.94E-01

20 2.08E+02 2.38E+02 2.23E+00 8.87E-01

30 1.65E+02 1.91E+02 2.25E+00 7.56E-01

40 2.35E+02 2.75E+02 1.85E+00 7.18E-01

50 1.34E+02 2.21E+02 1.69E+00 7.16E-01

Rosenbrock Function, Dimension:10x50bit=500bit

Pop Mean Std Mean Std

10 2.96E+02 3.03E+02 8.08E+00 1.05E+00

20 2.21E+02 2.77E+02 7.86E+00 8.70E-01

30 2.86E+02 2.88E+02 8.27E+00 8.62E-01

40 1.85E+02 2.42E+02 8.56E+00 6.77E-01

50 4.36E+02 6.74E+02 9.07E+00 8.85E-01

Rosenbrock Function, Dimension: 20x50bit=1000bit

Pop Mean Std Mean Std

10 3.73E+02 3.44E+02 1.33E+02 5.02E+01

20 2.67E+02 2.38E+02 2.00E+02 5.31E+01

30 3.22E+02 3.22E+02 3.16E+02 1.02E+02

40 6.98E+02 8.94E+02 4.84E+02 1.39E+02

50 6.21E+02 4.14E+02 6.26E+02 2.21E+02

3. D=1,

4. bitSize=10;

5. Dim=1*10=10;

6. maxVal=210-1=1023;

7. decVal=871,

8. conVal=-100+(100-(-100))*(871/1023)

9. conVal=70,2834799608993.
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T˔˕˟˘ 9: Comparison of XORTSA and BPSO on Rastrigin Function.

BPSO XORTSA

Rastrigin Function, Dimension:5x50bit=250bit

Pop Mean Std Mean Std

10 1.00E+01 4.10E+00 2.65E-03 1.45E-02

20 1.22E+01 6.20E+00 3.32E-02 1.82E-01

30 1.25E+01 6.15E+00 3.32E-02 1.82E-01

40 1.16E+01 4.72E+00 1.15E-01 3.09E-01

50 1.04E+01 5.23E+00 8.39E-02 2.60E-01

Rastrigin Function, Dimension:10x50bit=500bit

Pop Mean Std Mean Std

10 2.30E+01 6.46E+00 3.58E+00 1.59E+00

20 2.46E+01 8.12E+00 4.20E+00 1.74E+00

30 2.28E+01 6.50E+00 5.28E+00 1.51E+00

40 2.33E+01 6.62E+00 5.82E+00 1.64E+00

50 2.40E+01 8.90E+00 6.63E+00 1.74E+00

Rastrigin Function, Dimension: 20x50bit=1000bit

Pop Mean Std Mean Std

10 4.51E+01 7.87E+00 4.03E+01 5.36E+00

20 4.88E+01 1.27E+01 4.32E+01 5.07E+00

30 4.97E+01 1.31E+01 4.85E+01 5.37E+00

40 5.07E+01 1.18E+01 5.04E+01 4.30E+00

50 5.10E+01 9.67E+00 5.30E+01 4.71E+00

5. Numerical Benchmark Problems

For investigating the performance of XORTSA, five numerical benchmark functions,
namely Sphere, Rosenbrock, Rastrigin, Griewank and Ackley are considered in the
experiments. The description of these mathematical benchmark functions properties
are given in Table 1.
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T˔˕˟˘ 10: Comparison of XORTSA and BPSO on Griewank Function.

BPSO XORTSA

Griewank Function, Dimension:5x50bit=250bit

Pop Mean Std Mean Std

10 5.40E-01 4.94E-01 2.23E-02 1.25E-02

20 4.20E-01 2.62E-01 1.59E-02 1.06E-02

30 4.84E-01 3.45E-01 2.24E-02 1.15E-02

40 4.81E-01 3.78E-01 2.15E-02 1.19E-02

50 7.13E-01 1.12E+00 2.31E-02 1.12E-02

Griewank Function, Dimension:10x50bit=500bit

Pop Mean Std Mean Std

10 3.29E-01 2.54E-01 1.40E-01 6.80E-02

20 3.55E-01 2.45E-01 1.63E-01 6.64E-02

30 3.73E-01 2.42E-01 2.67E-01 8.03E-02

40 3.23E-01 2.98E-01 3.45E-01 8.10E-02

50 4.91E-01 5.93E-01 4.22E-01 1.02E-01

Griewank Function, Dimension: 20x50bit=1000bit

Pop Mean Std Mean Std

10 3.58E-01 2.58E-01 1.45E+00 2.16E-01

20 3.78E-01 2.49E-01 1.84E+00 2.89E-01

30 4.67E-01 3.30E-01 2.39E+00 3.58E-01

40 1.09E+00 1.36E+00 2.94E+00 4.82E-01

50 1.96E+00 2.50E+00 3.71E+00 7.01E-01

5.1. Sphere Function

Sphere function is a unimodal and separable funtion. It has a global minimum f(x) = 0
where x = [0,…,0]𝐷. This function’s search range is [-100, 100].

𝑓 (𝑥) =
𝐷

∑
𝑖=1

𝑥𝑖2 (6)
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T˔˕˟˘ 11: Comparison of XORTSA and BPSO on Ackley Function.

BPSO XORTSA

Ackley Function, Dimension:5x50bit=250bit

Pop Mean Std Mean Std

10 1.74E+00 1.28E+00 3.69E-05 8.53E-05

20 1.83E+00 1.25E+00 1.10E-05 1.56E-05

30 1.90E+00 1.28E+00 2.97E-05 2.79E-05

40 2.03E+00 1.17E+00 6.76E-05 8.78E-05

50 1.80E+00 1.26E+00 3.50E-04 2.71E-04

Ackley Function, Dimension:10x50bit=500bit

Pop Mean Std Mean Std

10 2.44E+00 3.41E-01 8.92E-02 1.07E-01

20 2.20E+00 6.96E-01 7.93E-02 3.87E-02

30 2.41E+00 3.66E-01 1.38E-01 7.25E-02

40 2.34E+00 6.39E-01 2.98E-01 1.89E-01

50 2.68E+00 1.13E+00 5.13E-01 2.02E-01

Ackley Function, Dimension:20x50bit=1000bit

Pop Mean Std Mean Std

10 2.41E+00 3.08E-01 3.35E+00 7.81E-01

20 2.45E+00 2.98E-01 4.25E+00 5.01E-01

30 2.45E+00 4.16E-01 4.98E+00 5.76E-01

40 2.69E+00 6.20E-01 5.61E+00 4.72E-01

50 3.72E+00 1.58E+00 6.32E+00 4.45E-01

5.2. Rosenbrock Function

Rosenbrock function is unimodal and non-separable funtion. It has a global minimum
f(x) = 0 where x = [1,…,1]𝐷. This function’s search range is [-10, 10].

𝑓 (𝑥) =
𝐷−1

∑
𝑖=1

[100(𝑥𝑖+1 − 𝑥
2
𝑖 )
2 + (𝑥𝑖 − 1)2] (7)
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5.3. Rastrigin Function

Rastrigin function is multimodal and separable funtion. It has a global minimum f(x) =
0 where x = [0,…,0]𝐷. This function’s search range is [-5.12, 5.12].

𝑓 (𝑥) =
𝐷

∑
𝑖=1

[𝑥𝑖2 − 10cos (2𝜋𝑥𝑖) + 10] (8)

5.4. Griewank Function

Griewank function is multimodal and non-separable. It has a global minimum f(x) =
0 where x = [0,…,0]𝐷. This function’s search range is [-600, 600]. This function is
relatively easy to solve in high dimensional cases [15].

𝑓 (𝑥) = 1
400

𝐷

∑
𝑖=1

𝑥𝑖2 −
𝐷

∏
𝑖=1

cos
(
𝑥𝑖
√𝑖)

+ 1 (9)

5.5. Ackley Function

Ackley function is multimodal and non-separable. It has a global minimum f(x) = 0
where x = [0,…,0]𝐷. This function’s search range is [-32, 32].

𝑓 (𝑥) = −20 exp
⎧⎪
⎨
⎪⎩
−0.2

√√√
⎷

1
𝐷

𝐷

∑
𝑖=1

𝑥𝑖2
⎫⎪
⎬
⎪⎭
− exp

{
1
𝐷

𝐷

∑
𝑖=1

cos (2𝜋𝑥𝑖))}
+ 20 + 𝑒 (10)

6. Experimental Results

In this work, different type of benchmark functions are used for analyzing BPSO and
XORTSA. Dimensionality is taken as 250, 500 and 1000. Function’s search ranges are
fixed as seen in Table 1. Population size is taken as 10, 20, 30, 40 and 50. Maximum
function evaluation number is taken as 100000. ST is taken as 0.1, 0.2, 0.3, 0.4 and 0.5.
All results are mean of 30 independent runs with random seeds.

The following Table 2, Table 3, Table 4, Table 5 and Table 6 show the results of the
XORTSA for 5 benchmark functions in 250, 500, 1000 dimensions and 10, 20, 30, 40, 50
populations.

The following Table VII, Table VIII, Table IX, Table X and Table XI show the comparison
of XORTSA and BPSO results for the 5 functions in 250, 500, 1000 dimensions and 10,
20, 30, 40, 50 populations.
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a                                                                          b                                                                               c

Figure 1: (a) Convergence graphs on Sphere function for 250 dimension; (b) Convergence graphs on Sphere
function for 500 dimension; (c) Convergence graphs on Sphere function for 1000 dimension.

a                                                                          b                                                                               c

Figure 2: (a) Convergence graphs on Rosenbrock function for 250 dimension; (b) Convergence graphs
on Rosenbrock function for 500 dimension; (c) Convergence graphs on Rosenbrock function for 1000
dimension.

a                                                                          b                                                                               c

Figure 3: (a) Convergence graphs on Rastrigin function for 250 dimension; (b) Convergence graphs on
Rastrigin function for 500 dimension; (c) Convergence graphs on Rastrigin function for 1000 dimension.

a                                                                          b                                                                               c

Figure 4: (a) Convergence graphs on Griewank function for 250 dimension; (b) Convergence graphs on
Griewank function for 500 dimension; (c) Convergence graphs on Griewank function for 1000 dimension.

The comparisons of the convergences of XORTSA and BPSO are given in Figure 1-5
for different dimensional functions.
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a                                                                          b                                                                               c

Figure 5: (a) Convergence graphs on Ackley function for 250 dimension; (b) Convergence graphs on Ackley
function for 500 dimension; (c) Convergence graphs on Ackley function for 1000 dimension.

In the Sphere function, BPSO is better than XORTSA on 1000 dimensional cases and
lower population sizes on other cases. Whenwe consider population size is higher than
30 and dimensions for functions are 5 or 10, the XORTSA is better than BPSO.

According to the comparison results, XORTSA is better than BPSO on all sizes and
populations on Rosenbrock and Rastrigin functions.

In Griewank and Ackley functions, on 250 and 500 dimensional cases, XORTSA pro-
duces better results than BPSO, while BPSO produces better results on 1000 dimen-
sional case.

According to the convergence graphs given in Figures 1-15, the convergence perfor-
mance of the XORTSA shows acceptable and comparable convergence characteristics
when compared with the BPSO algorithm.

Generally speaking, XORTSA shows better performance on solving multimodal non-
separable functions and solving these functions are harder than the others.

7. Conclusion

In this paper, a new method for solving binary optimization problems is presented.
The binary optimization problem is solved by using the tree-seed algorithm with the
XOR logic operator. The proposed method (XORTSA) has been compared with BPSO. To
compare XORTSA and BPSO, five benchmark functions are used in different features.
According to the convergence graphs shown in Figure 1-15, the convergence speed
of XORTSA is better than BPSO on almost all cases. According to the experimental
results, the proposed method (XORTSA) produced better results than BPSO on some
functions. Experimental results show that XORTSA can be applied to solve large-scale
binary optimization problems.
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