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Abstract
In the present work we have synthesized nanotubular TiO2 film with a nonstoichiometric
layer in the vicinity of titanium foil by anodization during 120 min. The catalytic activity
of nanotubular titanium dioxide films formed during the oxidation of acetone to carbon
dioxide under the action of visible light with a wavelength of 450 nm was found to be
approximately 2 times higher compared to standard titanium dioxide (Degussa P25).
Such a pronounced enhancement of activity may be attributed to a more efficient
absorption of visible light by the films due to narrowing of the optical gap because
of difference in the nonstoichiometry of titanium dioxide near the interface between
nanotubular film and the titanium foil substrate.
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1. Introduction

Recently, titanium dioxide TiO2 has attracted great interest for green chemistry, as a
photocatalyst for the removal of organic pollutants and renewable energy sources,
such as solar panels and photoelectrochemical decomposition of water [1–9]. The main
disadvantage of TiO2 for green chemistry is it wide band gap. That is why its photoactivity
takes place exclusively near ultraviolet (UV) irradiation, but UV intensity in the solar
spectrum is only a few percent [10]. So, to eliminate this disadvantage one need to
develop an approach based on the decrease of the band gap width. In present work
we did it by creating structural vacancies on the oxygen sublattice in nanotubular TiO2.
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2. Experimental Part

Nanotubular titanium dioxide films were synthesized on a Digma setup consisting of
electrochemical cell, thermostat and power supply [11, 12]. The anodic oxidation was
carried out on a thin titanium foil. Anodization was carried out at the same voltage but
different anodization time. A solution of ethylene glycol and ammonium fluoride was
employed as an electrolyte. All the chemical reagents used in the study were of analyt-
ical grade. X-ray diffraction (XRD) of the films was performed with the Bragg-Brentano
recording geometry. XRD patterns were measured using the step-scan mode at Δ(2𝜃) =
0.02∘ in the wide angular range with a long exposure time at each step. The surface and
morphology of the synthesized samples were studied by scanning electron microscope
(SEM) under high vacuum using an InLens detector. Diffuse reflectance spectra (DRS) of
the samples were recorded on a Lambda 35 (Perkin Elmer) UV-vis spectrophotometer
with a RSA-PE-20 (Labsphere) diffuse reflectance attachment. Photocatalytic activity of
the catalysts was measured in a flow reactor, and reactants were identified on a FTIR
spectrometer. The study was performed using a light-emitting diode with a maximum
wavelength of 450 nm and a 1.0 A / 30 V current. The other reaction condition were
as follows: T = 40∘C, relative humidity of 20%, acetone concentration of 800 ppm, and
flow rate of 60 mL/min. Concentration of acetone was found from the area of absorption
band at 1160-1265 cm−1, and concentration of carbon dioxide, from the band at 2200-
2450 cm−1. The rate of photocatalytic oxidation was calculated from carbon dioxide
accumulation, which is a sole gas product of the reaction

C3H6O + 4 O2 → 3 CO2 + 3 H2O

3. Results and Discussion

Analysis of TiO2 films on a titanium foil showed that the morphology and properties
of the synthesized nanotubular films depend on the anodization time, the titanium foil
morphology, the composition and temperature of the electrolyte, and the current in the
electrochemical cell. The morphological analysis of the resulting films made it possible
to obtain the dependences of geometric parameters of the nanotubular titanium dioxide
layer on anodization time (see Table 1). In addition, the roughness coefficientH, the solid
fraction A and the effective surface area Seff were estimated using a technique reported
in [13].

According to experimental data, the nanotube length ranges from 550 to 2000 nm;
the value of inner diameterDin of nanotubes varies from 27 to 39 nm; and outer diameter
Dout, from 42 to 53 nm. It was shown that the solid fraction A of nanotubes decreases
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TABLE 1: Parameters of the synthesized nanotubular TiO2 film samples.

Parameters of nanotubular TiO2
samples

Anodization time, min

15 30 60 120 180 360

NT length (L, nm) 700 750 550 1000-2000 1300 1200

Inner diameter of NT (Din, nm) 27 33 33 38 38 39

Outer diameter of NT (Dout, nm) 42 46.2 49.6 53.4 50.6 49.6

Thickness of NT walls (w, nm) 7.5 6.6 8.3 7.7 6.3 5.3

Distance between NT (y, nm) 7 9 9 8 8 9

Roughness coefficient (H) 73 71 48 132 122 112

Effective surface area (Seff, cm2) 229 223 151 415 383 352

Solid fraction (A) 0.39 0.31 0.36 0.34 0.29 0.25

from 0.39 to 0.25 with increasing the anodization time t𝐴. It should be noted that at a
certain time point the growth of the oxide layer slows down considerably because the
current density decreases and hence the dissolution of the oxide layer becomes more
intense than the oxidation. Effective surface area Seff = 415 cm2 for the grown array
reaches its maximum at t𝐴 = 120 min; this anodization time is sufficient to achieve a
maximum length of nanotube L = 2000 nm.

On the XRD pattern of the foil received by anodizing for 120 minutes, an increase in
the signal in the form of a diffuse halo was observed in the region of small scattering
angles. Intense diffuse halo, in the range from 20 to 32∘, and the absence of diffraction
peaks indicate that the nanotubular titanium dioxide film is amorphous [14].

Table 2 lists data on the catalytic activity of three different nanotubular TiO2 films
prepared by anodization under similar conditions during 120 min. The catalytic activity
(see Table 2) varies over a wide range, from 2.9 to 5.2 μmol/(min·g), which testifies to a
significant role of different nonstoichiometry in the resulting films.

TABLE 2: Catalytic activity of films with a nanotubular TiO2 layer (anodization for 120 min) in comparison with
Degussa P25 titanium dioxide.

Sample Nanotube length, nm Oxidation rate, μmol/(min·g)

1 2000 5.2

2 1500 2.9

3 1000 5.1

TiO2 – Degussa P25 - 2.0

Nonstoichiometry of nanotubular films was studied by diffuse reflection. In the optical
DRS of the nanotubular TiO2 layer in the visible spectral region near 450 nm, a wide
dip of diffuse reflection is observed. This indicates the presence of nonstoichiometry in
the amorphous titanium dioxide film. Atomic defects represented by vacancies in the
amorphous network lead to the formation of energy levels in the band gap of titanium
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dioxide, which in its turn results in the absorption of visible light with a wavelength of
about 450 nm. This exerts a pronounced effect on the catalytic activity of the film in the
visible region.

A comparison of Kubelka-Munk functions for nanotubular amorphous film and
Degussa P25 titanium dioxide nanopowder corroborates the model of indirect transition
in semiconductor nanotubular film. The extrapolation with a linear function to zero
absorption in the region of high photon energies shows that the maximum band gap
width for a nanotubular TiO2 layer anodized for 120 min is Eg = 3.3 eV, while Eg = 3.0
eV for the Degussa P25 TiO2 nanopowder.

Thus, we have synthesized films with a nanotubular TiO2 layer whose nonstoichiom-
etry depends on synthesis conditions. This parameter exerts an essential effect on
the activity of samples, which varies between 2.9 and 5.2 μmol/(min·g). According to
the DRS, the optical gap width for nanotubular film changes along the film thickness
from 3.3 eV to small values corresponding to the photon energy of visible light, due
to nonstoichiometry of the film near the interface with the metal substrate. Thus, the
structural amorphism in nanotubular titanium dioxide does not produce a switching
from indirect transition (crystalline titanium dioxide) to direct one (amorphous titanium
dioxide). With the modeling of harmful organic impurities by acetone it is shown that
synthesized nonstoichiometric nanotubular titanium dioxide should be useful for purifi-
cation of water and air.
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