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Abstract
The three-sub-lattice approximation model calculations of the energies and magnetic
parameters (Curie temperature and mean magnetic moment) were used. The
distributions of atomic species between different model sub-lattices and the
thermodynamic properties depending on the 𝜎 Fe-V alloy compositions at T = 0K
were evaluated by solving the set of equations at T = 0K obtained by minimizing the
functional ΔG with respect to the independent configuration degrees of freedom.
The comparison of the calculated data on the structural properties of 𝜎-phases in
Fe- (Cr, V) systems depending on composition and temperature was conducted.
The consistency of the input data and the calculation results for the thermodynamic
properties is obtained, namely, the dependence of the enthalpy of mixing of the
𝜎-phase of the Fe-V system on the composition relatively of the BCC phases of pure
Fe and V. The input data was used to find the initial values of the model parameters.
The consistency of these data proves the correctness of the found energy parameters
of the model.

Keywords: thermodynamics; three-sub-lattice model; Sigma - phase; alloys for
nuclear energy; Fe-V, Fe-Cr systems.

1. Introduction

Previously, the three-sub-lattice model (3SM) was used by the authors for a consistent
description of the structural properties (SP) and thermodynamic properties of the Fe-
Cr 𝜎-phase [1, 2]. The difference between the Fe-Cr and Fe-V systems consists in the
fact that the 𝜎-phase in the Fe-V system is stable both in the ferromagnetic state and
paramagnetic state. The Curie temperature (Tc) for the 𝜎 Fe-V alloys is an order of
magnitude higher than Tc for the 𝜎 Fe-Cr alloys, according to experimental data [3].
Therefore, the 𝜎-phase in this systemwas considered in the paramagnetic state. In the
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framework of the physic-empirical model, the configuration contribution andmagnetic
contribution to the Gibbs mixing energy (ΔG) for the sigma phase in the Fe-V system
was taken into account.

2. Formulation of the model

The crystal lattice of sigma-phase contains 5 sub-lattices in which 30 atoms possessing
of different coordination numbers of the nearest neighbors (12, 14 and 15) are placed.
In [1] the real structure of sigma-phase modeled with 3 sub-lattices to describe the
distribution of atoms inside the structure of sigma-phase phase depending on the
alloy composition and temperature. According to 3SM the real structure of 𝜎-phase
A2

12B415C814D8
12E814 (including 5 sub-lattices) was replaced by 3 sub-lattices. All of the

model sub-lattices are being filled by atoms of two species with coordination numbers
(12, 14 and 15). The method of calculation of structural and thermodynamic properties
of 𝜎- phases within 3SM was described in [1-2], and applied to the Fe-Cr system,
where the energy parameters were calculated by ”fixing” to the results of quantum -
mechanical calculations obtained at 0K. The functional of free energymixing for sigma-
phase relatively the BCC-phases of the two species within the 3SM is presented in the
following form:

𝑓𝐵𝐶𝐶Δ𝑝𝐵𝐶𝐶𝐺𝜎(𝑥𝑉 , 𝑦122 , 𝑦152 , 𝑇 ) = 𝑥 ⋅ 𝛿𝐸1 + 𝑦122 ⋅ 𝛿𝐸2 + 𝑦142 ⋅ 𝛿𝐸3

+𝑥2 ⋅ 𝛿𝐸4 + (𝑦122 )
2 ⋅ 𝛿𝐸5 + ⋅ (𝑦142 )

2 ⋅ 𝛿𝐸6 + 𝑥𝑦122 ⋅ 𝛿𝐸7 + 𝑥𝑦142 ⋅ 𝛿𝐸8 + 𝑦122 𝑦142 ⋅ 𝛿𝐸9 + (1 − 𝑥)

⋅ (Δ𝐻
𝑓𝜎→𝑓𝐵𝐶𝐶
𝐹𝑒 − 𝑇Δ𝑆𝑓𝜎→𝑓𝐵𝐶𝐶

𝐹𝑒 )+

+𝑥 ⋅ (Δ𝐻
𝑝𝜎→𝑓𝐵𝐶𝐶
𝑉 − 𝑇 ⋅ Δ𝑆𝑝𝜎→𝑓𝐵𝐶𝐶

𝑉 ) + 𝑅𝑇 ⋅ {ln(𝐵0(𝑥) + 1)} ⋅ 𝑔(𝜏(𝑥))+

+𝑅 ⋅ 𝑇 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼12 (𝑦121 ⋅ ln(𝑦121 ) + 𝑦122 ⋅ ln(𝑦122 )) +

𝛼14 (𝑦141 ⋅ ln(𝑦141 ) + 𝑦152 ⋅ ln(𝑦142 )) +

𝛼15 (𝑦151 ⋅ ln(𝑦151 ) + 𝑦152 ⋅ ln(𝑦152 ))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)
where

𝑔(𝜏(𝑥)) = 1 −
[
79⋅𝜏−1
140⋅𝑝 + 474

497 ⋅ (
1
𝑝 − 1) ⋅ (

𝜏3
6 + 𝜏9

135 +
𝜏15
600)]

𝐷 , 𝜏(𝑥) = 𝑇
𝑇𝑐(𝑥)

(1a)

𝑎12𝑦122 + 𝑎14𝑦142 + 𝑎15𝑦152 = 30 ⋅ 𝑥; 𝛼12 = 10/30; 𝛼14 = 16/30; 𝛼15 = 4/30, (2)
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where x – composition of the second species (V) in the Fe-V system. 𝑦𝑖1, 𝑦𝑖2-(i = 12;
14; 15) mole fractions of the first and second species in the 3SM of the 𝜎-phase. The
𝑦122 = 𝑦12𝑉 , 𝑦142 = 𝑦14𝑉 selected as independent variables, and 𝑥 = 𝑥𝑉 the vanadium
concentration parameter.

The values of the internal parameters of the model (with a constant composition
and temperature) are found from the solution of the set of equations (3) and the local
stability conditions (3b)

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑑𝜎Δ𝜎𝐺𝜎(𝑥, 𝑇 )
𝑑𝑦122

= 0

𝑑𝜎Δ𝜎𝐺𝜎(𝑥, 𝑇 )
𝑑𝑦152

= 0
(3)

det

‖
‖
‖
‖
‖
‖
‖‖

𝑑2Δ𝜎𝐺𝜎(𝑥, 𝑇 )
𝑑𝑦(12)22

𝑑2Δ𝜎𝐺𝜎 (𝑥,𝑇 )
𝑑𝑦(15)2 𝑑𝑦(12)2

𝑑2Δ𝜎𝐺𝜎(𝑥, 𝑇 )
𝑑𝑦(12)2 𝑑𝑦(15)2

𝑑2Δ𝜎𝐺𝜎 (𝑥,𝑇 )
𝑑𝑦(15)22

‖
‖
‖
‖
‖
‖
‖‖

> 0 (3b)

Conditions of the local and global sustainability can be rewritten as:

𝐺𝑒𝑠Δ𝐻𝜎(𝑥𝑉 , 𝑦122 , 𝑦142 , 0) =

|
|
|
|
|
|
|
||

2 ⋅ 𝛿𝐸5 𝛿𝐸9 𝛿𝐸7

𝛿𝐸9 2 ⋅ 𝛿𝐸6 𝛿𝐸8

𝛿𝐸7 𝛿𝐸8 2 ⋅ 𝛿𝐸4

|
|
|
|
|
|
|
||

> 0; 4 ⋅ 𝛿𝐸5 ⋅ 𝛿𝐸5 − (𝛿𝐸9)
2 > 0

(4)

3. The calculations of energetic parameters

The problem of calculating the energetic parameters of 3SM was due to the fact that
no evidence of ab-initio calculations of enthalpy of mixing in the system Fe-V. To solve
this problem, the authors of this paper propose a novel approach. Use the features of
the phase diagram of Fe-V (see Fig.1) [1], namely a point of equal concentrations (PEC)
between 𝜎-and bcc- phases at T = 1750 K. Analytically, it can be written as (5)

𝐺𝜎(𝑥𝑉 = 𝑥0, 𝑇 = 1750𝐾) = 𝐺𝐵𝐶𝐶 (𝑥𝑉 = 𝑥0, 𝑇 = 1750𝐾) (5)

Then, the enthalpy jump was taken into account in the phase transition from the
BCC phase to the 𝜎 – phase under the assumption that the enthalpy of the transition
does not depend on temperature.

Δ𝐻𝜎(𝑥0, 0) = Δ𝐻𝐵𝐶𝐶 (𝑥0, 0) − Δ𝐻𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡(𝑥 = 𝑥0 = 0.517).
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From the Sluter’s data [8] can be calculated lattice parameters of pure components
at 0K,. Given the non-variant reaction (Landolt - Borstein New series IV / 19B) for
the point of equal concentrations of Fe-V enthalpy of transformation at T = 1514 K
is. Experimental thermodynamic data presented in Table 1, for the BCC phase of Fe-V
can be used for the 𝜎-phase at the equal concentration. Next, we need to go down
the temperature of the point of equal concentration to a temperature of T = 0 K. The
enthalpy of transition of 𝜎-phase in the BCC phase calculated by the formula

Δ𝐻𝐵𝐶𝐶 (𝑥0, 𝑇 = 1700) = Δ𝐻𝐵𝐶𝐶 (𝑥0, 0) +∫
𝑇=1700

0
Δ𝐶𝐵𝐶𝐶

𝑃 (𝑥0, 𝑇 )𝑑𝑇 (6)

Figure 1: The phase diagram of the Fe-V system [1].

The enthalpy jump at the transition from BCC to 𝜎-phase, in assumption that the
enthalpy of transition is temperature independent, was taken into account as the next
step.

Δ𝐻𝜎(𝑥0, 0) = Δ𝐻𝐵𝐶𝐶 (𝑥0, 0) − Δ𝐻𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡(𝑥 = 𝑥0 = 0.517) (7)

As a result, the mixing enthalpy dependence on the second element concentrations
was plotted by the three points: Δ𝐻𝜎→𝐵𝐶𝐶

𝐹𝑒 ; Δ𝐻𝜎→𝐵𝐶𝐶
𝑉 ; Δ𝐻𝜎(𝑥0, 0), the difference in

the enthalpies of the pure species between the BCC and 𝜎-phases at T = 0 K, by least
square method approximation to begin searching the system energetic parameters
(see Figure 2, table 1).

The magnetic contribution to (1a) was taken into account in the framework of the
Inden-Hillert-Jarl formalism [5]. The mean magnetic moment <m> and Tc dependence
on the composition was obtained from an assessment of the experimental data for the
mean magnetic moment <m> and Curie temperature Tc for alloys with the structure
of the 𝜎 –phase of the Fe-Cr and Fe-V systems.
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Energy parameters of the model were calculated by reference to the energy of
formation of ordered complexes (𝐴,𝐷)1210𝐵15

4 (𝐶, 𝐸)1416 by using results shown in Figure
3, Table 1. In accordance with these data the set of equations was obtained to find the
initial parameters of the model (at 0 K) (6).

 

0 0.2 0.4 0.6 0.8 1
1− 10

4
×

0

1 10
4

×

2 10
4

×

ϕ t( )

y i

t xi,  

Figure 2: Estimated concentration dependence of enthalpy of mixing 𝜎-phase relative BCC-phases for pure
the two components of the Fe – V system.

Figure 3: The concentration dependence of the Gibbs energy of mixing relative sigma phases for pure
components for the Fe-V system at T = 0K was obtained of the least square method taking into account
the framework of the Inden-Hillert-Jarl formalism for searching initial energetic parameters.
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Table 1: The results of calculations of the enthalpy of mixing (Fig.3) for the ordered complexes
(𝐹 𝑒, 𝑉 )1210(𝐹 𝑒, 𝑉 )154 (𝐹 𝑒, 𝑉 )1416 structure 𝜎-phase at 0 K in the system Fe-V.

(𝐹 𝑒, 𝑉 )1210(𝐹 𝑒, 𝑉 )154 (𝐹 𝑒, 𝑉 )1416 x(V) 𝜎Δ𝜎𝐻𝜎 ≡
𝐸𝑖

kJ/mole

1 VFeV 𝑦121 = 0, 𝑦122 = 1,

𝑦151 = 1, 𝑦152 = 0 , 𝑦141 = 0, 𝑦142 = 1

0.867 −6.337

14 (Fe3/4V1/4)(Fe1/2V1/2)

Fe1/2V1/2)

𝑦121 = 3/4 , 𝑦122 = 1/4 ,

𝑦151 = 1/2 , 𝑦152 = 1/2 , 𝑦141 = 1/2,

𝑦142 = 1/2

0.4166 −19.96

16 (Fe9/10V1/10)(Fe7/8V1/8)

(Fe3/4V1/4)

𝑦121 = 9/10 , 𝑦122 = 1/10 ,

𝑦151 = 7/8 , 𝑦152 = 1/8 , 𝑦141 = 3/4,

𝑦142 = 1/4

0.1833 −14.47

18 (Fe19/20V1/20) (Fe15/16V1/16)

Fe7/8V1/8)

𝑦121 = 19/20 , 𝑦122 = 1/20 ,

𝑦151 = 15/16 , 𝑦152 = 1/16 , 𝑦141 = 7/8,

𝑦142 = 1/8

0.09167 −8.55

21 (Fe1/20V19/20) (Fe1/16V15/16)

(Fe1/8V7/8)

𝑦121 = 1/20 , 𝑦122 = 19/20 ,

𝑦151 = 1/16 , 𝑦152 = 15/16 , 𝑦141 = 1/8,

𝑦142 = 7/8

0.9083 −4.399

22 (Fe1/10V9/10) (Fe1/8V7/8)

(Fe1/4V3/4)

𝑦121 = 1/10 , 𝑦122 = 9/10 ,

𝑦151 = 1/8 , 𝑦152 = 7/8 , 𝑦141 = 1/4,

𝑦142 = 3/4

0.8167 −8.655

23 (Fe1/4V3/4)(Fe1/2V1/2)

Fe1/2V1/2)

𝑦121 = 1/4 , 𝑦122 = 3/4 ,

𝑦151 = 1/2 , 𝑦152 = 1/2 , 𝑦141 = 1/2,

𝑦142 = 1/2

0.5833 −17.47

42 FeVV 𝑦121 = 1 , 𝑦122 = 0 ,

𝑦151 = 0, 𝑦152 = 1, 𝑦141 = 0, 𝑦142 = 1

0.667 −14.84

46 (Fe)(V)(Fe3/4V1/4) 𝑦121 = 1 , 𝑦122 = 0 ,

𝑦151 = 0, 𝑦152 = 1, 𝑦141 = 3/4,

𝑦142 = 1/4

0.267 −17.88
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⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

109
120𝛿𝐸1 +

19
20𝛿𝐸2 +

7
8𝛿𝐸3 + (

109
120)

2
𝛿𝐸4 + (

19
20)

2
𝛿𝐸5 + (

7
8)

2
𝛿𝐸6

+109 ⋅ 19120 ⋅ 20𝛿𝐸7 +
109 ⋅ 7
120 ⋅ 8𝛿𝐸8 +

19 ⋅ 7
20 ⋅ 8𝛿𝐸9 = 𝐸21

49
60𝛿𝐸1 +

9
10𝛿𝐸2 +

3
4𝛿𝐸3 + (

49
60)

2
𝛿𝐸4 + (

9
10)

2
𝛿𝐸5 + (

3
4)

2
𝛿𝐸6

+49 ⋅ 9600 𝛿𝐸7 +
49 ⋅ 3
240 𝛿𝐸8 +

27
40𝛿𝐸9 = 𝐸22

7
12𝛿𝐸1 +

3
4𝛿𝐸2 +

1
2𝛿𝐸3 + (

7
12)

2
𝛿𝐸4 + (

3
4)

2
𝛿𝐸5 + (

1
2)

2
𝛿𝐸6

+2148𝛿𝐸7 +
7
24𝛿𝐸8 +

3
8𝛿𝐸9 = 𝐸23

5
12𝛿𝐸1 +

1
4𝛿𝐸2 +

1
2𝛿𝐸3 + (

5
12)

2
𝛿𝐸4 + (

1
4)

2
𝛿𝐸5 + (

1
2)

2
𝛿𝐸6

+ 5
48𝛿𝐸7 +

5
24𝛿𝐸8 +

1
8𝛿𝐸9 = 𝐸14

11
60𝛿𝐸1 +

1
10𝛿𝐸2 +

1
4𝛿𝐸3 + (

11
60)

2
𝛿𝐸4 + (

1
10)

2
𝛿𝐸5 + (

1
4)

2
𝛿𝐸6

+ 11
600𝛿𝐸7 +

11
240𝛿𝐸8 +

1
40𝛿𝐸9 = 𝐸16

11
120𝛿𝐸1 +

1
20𝛿𝐸2 +

1
8𝛿𝐸3 + (

11
120)

2
𝛿𝐸4 + (

1
20)

2
𝛿𝐸5 + (

1
8)

2
𝛿𝐸6

+ 11
2400𝛿𝐸7 +

11
960𝛿𝐸8 +

1
160𝛿𝐸9 = 𝐸18

13
15𝛿𝐸1 + 𝛿𝐸2 + 𝛿𝐸3 + (

13
15)

2
𝛿𝐸4 + 𝛿𝐸5 + 𝛿𝐸6 +

13
15𝛿𝐸7 +

13
15𝛿𝐸8 + 𝛿𝐸9 = 𝐸1

2
3𝛿𝐸1 + 𝛿𝐸3 + (

2
3)

2
𝛿𝐸4 + 𝛿𝐸6 +

2
3𝛿𝐸8 = 𝐸42

4
15𝛿𝐸1 +

1
4𝛿𝐸3 + (

4
15)

2
𝛿𝐸4 +

1
4𝛿𝐸6 +

1
15𝛿𝐸8 = 𝐸46

(8)

Solving linear system (7) relatively the energy parameters of 3-sublattice model
solutions have been obtained for the nine independent energy parameters. Then, the
procedure of the inverse problem solution was conducted (minimization of equation
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(7) in the space of energy parameters) 3SM. Procedure for solving the inverse problem
(minimization of equation (8) in the space of energy parameters) 3PM was carried out
to correction the energy settings found under the condition of the local and global
stabibility (3). The solving the problem of correcting the initial parameters of themodel
using by the normalization condition (8). Illustration of stable and metastable solutions
are Figure 4,5.

𝜒2 =
𝑁

∑
𝑖=1 [

𝜎Δ𝜎𝐻𝜎
exp(𝑥𝑖) −𝜎 Δ𝜎𝐻𝜎

𝑐𝑎𝑙𝑐(𝑥𝑖)
𝛿Δ𝐻𝜎(𝑥𝑖) ]/(𝑁 − 8) → 0 , 𝑁 = 11 ,

𝛿Δ𝐻𝜎
exp(𝑥𝑖)

Δ𝐻𝜎
exp(𝑥𝑖)

≈ 0.1

(9)

The optimizing energy values of the model parameters for σ− phase are shown in
table 2

Illustration of stable and metastable solutions are Figure 3,4.

𝑓𝜎Δ𝑝𝜎𝐺𝜎(𝑥𝑉 = 0, 𝑦122 , 𝑦152 , 𝑇 ) =𝑓𝜎 Δ𝑝𝜎𝐺𝜎(𝑥𝑉 = 1, 𝑦122 , 𝑦152 , 𝑇 ) = 0 (10)

Table 2: The optimize energy values of the model parameters for 𝜎-phase (kJ / mol).

Δ𝐸1 = −5.598 ⋅ 102 Δ𝐸2 = 2.007 ⋅ 102 Δ𝐸3 = 2.798 ⋅ 102

Δ𝐸4 = 4.073 ⋅ 103 Δ𝐸5 = 0.715 ⋅ 103 Δ𝐸6 = 0.910 ⋅ 103

Δ𝐸7 = −3.285 ⋅ 103 Δ𝐸8 = −3.737 ⋅ 103 Δ𝐸9 = 1.450 ⋅ 103

 

y2
12  à              

y
2
1

4
  
 à

 

Figure 4: Illustration of stable solutions 𝑦122 , 𝑦142 , multiplied by 100.
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Figure 5: Illustration of metastable solutions, multiplied by 100.

4. The calculation results

According to 3SM, calculations of the concentration dependences of the vanadium
atom distribution over the three model sublattices with coordination of neighbors
atoms 12, 15 and 14 calculated for the Fe-V system at T = 0K were made (see Figure
6). A comparison of the calculations of the 𝜎 Fe-Cr alloys [1] with the 𝜎 Fe-V alloys
obtained in 3PM, was made (Figures 6-7). Comparing Figures 6 and 7 one can notice
that in both cases in iron-rich alloys, the impurity atoms (V, Cr) of the sub-lattice are
filled first with atoms whose coordination environment equals to 15. The concentration
dependence of the Gibbs potential of the Fe-V system at T = 0K was calculated, see in
Figure 7.

The consistency of the input data and the calculation results for the thermodynamic
properties (see Figures 2 and 8) is obtained, namely, the dependence of the enthalpy
of mixing of the 𝜎-phase of the Fe-V system on the composition relatively of the BCC
phases of pure Fe and V (Figs. 2 and 8). The beats in Fig.8 are due to the influence of
errors calculated both by the values of the energy parameters of the model and by
the values of the mole fractions of the concentrations of vanadium atoms populating
three model sub-lattices of the 𝜎-phase.
The input data was used to find the initial values of the model parameters. The

consistency of these data proves the correctness of the found energy parameters of
the model.
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Figure 6: The concentration dependence of the distribution of vanadium atoms in threemodel sub-lattices
with the coordination of atoms - the neighbors of 12, 14 and 15, calculated at 0K.

Figure 7: The concentration dependence of the distribution of cromium atoms in three model sub-lattices
with the coordination of atoms - the neighbors of 12, 14 and 15, calculated at 0K [1, 2].

5. Conclusion

In this work it was possible to calculate the energy mixing for 𝜎-phase as function of
composition at T = 0K, despite the absence of any ab-initio calculated data of a mixing
enthalpy of the 𝜎 Fe-V alloys, in contrast to [1, 2]. The distributions of atomic species in
different model sub-lattices and the TPs depending on the 𝜎 Fe-V alloy compositions
at T = 0K were evaluated with the help of energy and magnetic parameters (Curie
temperature and mean magnetic moment) which were previously calculated, and by
solving the set of equations at T = 0K obtained by minimizing the functional ΔG with
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Figure 8: The concentration dependence of the configurational part of Gibbs energy of mixing for 𝜎-phase
of the Fe-V system at T = 0K.

respect to the independent configuration degrees of freedom. The comparison of the
calculated and experimental data on the structural properties of 𝜎-phases in Fe- (Cr,
V) systems depending on composition and temperature was conducted.
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