

Conference Paper

Chemical Stabilization Features of Ladle Furnace Slag in Ferrous Metallurgy

Sheshukov O. Yu.^{1,2}, Mikheenkov M. A.², Egiazaryan D. K.², Ovchinnikova L. A.², and Lobanov D. A.²

¹Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia

²Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Keywords: ladle furnace slag, secondary alumina production wastes, slag stabilization, belite, mayenite

Nowadays due to the application expansion of secondary steel processing methods, which provide high-degree metal desulfurization, a problem of the ladle furnace slag (or high-calcium refining slag) stabilization arose in the ferrous metallurgy. This slag cannot be stabilized because of its self-disintegrating properties [1].

It is known that this kind of disintegration is driven by the presence of dicalcium silicate (belite, or 2CaO·SiO₂, or C₂S) in the refining slag. Approximately 80% particles of disintegrated slag have grain sizes less than 30 μ m. Such particles are easily aerated and carried by the wind for long distances; they pollute soils, dissolve in ground, sed-imentary and sewage waters. However, it is noted in [2–5] that there are four known widespread ways to prevent decomposition of secondary steel processing slags.

- 1. Thermal stabilization of high-temperature C_2S modifications by fast cooling (quenching). Due to quenching, the high-temperature β - C_2S modification acquires the ability to maintain its properties in the temperature range from 25 to 700°C.
- 2. Slag stabilization by boron addition based on the partial replacement of SiO_4^{4-} units by BO_3^{3-} units in the C₂S structure, which interfere the transformation of β -C₂S into γ -C₂S under polymorphic transformation.
- 3. Non-boron stabilization based on isomorphous replacement of Ca²⁺ units by Mg²⁺, K⁺, Ba²⁺, Cr³⁺, Mn²⁺ units, and SiO₄⁴⁻ units by SO₄²⁻ and PO₄³⁻ as well. To stabilize high temperature modifications of α -C₂S and α' -C₂S, an Al₂O₃, Fe₂O₃, BaO, K₂O, P₂O₅ and Cr₂O₃ oxides are used. For β -C₂S stabilization Na₂O, K₂O, BaO, MnO₂, Cr₂O₃ oxides or its combination are used.

Corresponding Author: Sheshukov O. Yu.; email: o.j.sheshukov@ufru.ru

Received: 6 June 2017 Accepted: 9 July 2017 Published: 24 August 2017

Publishing services provided by Knowledge E

© Sheshukov O. Yu. et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Selection and Selection and Peer-review under the responsibility of the Technogen Conference Committee.

Figure 1: The plan of A-B-C experiment conducting in the area of CaO-SiO₂-Al₂O₃ phase diagram.

Material type	Content in the slag, [mass. %]									
	CaO	SiO ₂	Al_2O_3	Fe0	MnO	MgO	Cr ₂ O ₃			
Model refining slag	70,10	15,01	3,64	0,54	0,43	10,05	0,23			

TABLE 1: Chemical composition of model slag.

4. Alternatively, slag decomposition can be averted by modifying the slag phase composition in order to avoid the presence of C_2S .

In this work the possibility of belite chemical stabilization by its transformation into more stabilized phases containing Al_2O_3 is estimated. The secondary alumina production wastes (SAPW) were used as a source of Al_2O_3 [6].

To determine phase composition change of the slag according to corrective additives in it, an experiment optimization was carried out by simplex-lattice planning. A plan of A-B-C experiment conducting in the area of CaO-SiO₂-Al₂O₃ phase diagram is shown in Figure 1.

Material type	Content in SAPW, [mass. %]							
	AI_2O_3	SiO ₂	Al _{met}	MgO	NaCl + KCl + NaF + KF + Na ₂ 0 + K ₂ 0			
The secondary alumina production wastes	20,0-75,0	1,0-10,0	5,0-20,0	5,0-12,0	5,0-20,0			

TABLE 2: The chemical composition of the secondary alumina production wastes.

The plan is located in the area, where the CaO content varies from 40 to 80 mass. %, SiO_2 from 10 to 50 mass. % and Al_2O_3 from 10 to 50 mass. %. It covers the area of CaO- SiO_2 - Al_2O_3 where metallurgical slag compositions are located. These slag compositions are used for the steel refining. The content of model slag and quartz sand as well as secondary alumina production wastes content were used as variable factors in the experiment. The chemical composition of model slag is presented in Table 1.

The quartz sand with the SiO_2 content more than 99,0 mass. % meets normative requirements. The chemical composition of the secondary alumina production wastes in presented in Table 2.

The dynamic viscosity ($Pa \cdot s$) of the slag at 1500°C was adopted as a response function in the experiment.

According to the plan of the experiment, model slag was mixed with SiO₂ and SAPW, and then the mixture was placed into a periclase-graphite crucible which was heated to the measurement temperature. The viscosity of slags was measured by a vibrational viscometer of the S.V. Stengel'meyer. The measurements were taken at 14 points in accordance with the experiment plan which is shown on the Figure 2. After the measurements, the crucibles were taken out of the furnace and placed in a heat-insulating block for slow cooling. The results of the viscosity measuring were described by a polynomial of the third degree. The qualitative X-ray phase analysis (XRD) was used to determine the type of phases contained in the cooled slag. The quantitative XRD was used to determine phase amount in the slag. The results of the viscosity measurement obtained by regression equations were visualized in the ternary graphs.

Figure 2 shows the response function isolines of slag viscosity (Pa·s) at 1500°C in the factor space. It also shows approximate area boundaries of basic slag phases. From the test results it can be seen that SAPW addition reduces the slag viscosity. The area with significant SiO₂ content demonstrates minimal slag viscosity (0,267 Pa·s). However, it should be taken into consideration that diopside CMS₂ and akermanite C_2MS_2 are formed in that area. These magnesium-silicate phases bind free MgO and hence they have a negative effect on lining life of secondary steel processing units. In accordance with the experiment results shown in Figure 2, the slag becomes stable

Figure 2: The results of phase definition amount in the samples of model slag with SAPW addition.

with the SAPW content increasing. The optimal area of stable slag is located in the range of SAWP content from 10 mass. % to 20 mass. %. If the SAPW content is lower than 10 mass. %, the slag is not stable. If its more than 20 mass. %, a fire-resistant spinel AM ($Al_2O_3 \cdot MgO$) is formed which increases slag viscosity.

Since preliminary evaluation tests of the SAPW stabilizing effect were conducted by the experiment planning methods in a large area of the CaO-SiO2-Al2O3 factor diagram with a large variation interval of the SAPW content (13.3 wt%), the boundaries of the optimal SAPW content where the slag is stabilized were determined with a very high margin of error.

To determine the slag stabilization mechanism and its precise boundaries under the SAWP addition, the SAPW additives in the amount from 10,0 to 30,0 mass.% were introduced with the step of 2,0 mass.% into the model slag. Slag with SAWP addition was placed in a crucible and heated to 1350°C, it then was exposured under the temperature for 2 hours and cooled in the furnace.

The results of phase amount determination in the samples of model slag with SAPW addition are demonstrated Figure 3.

From the test results one can conclude that the SAPW content increment increases the mayenite $C_{12}A_7$ (12CaO·7Al₂O₃) content in the slag while the amount of belite phases is decreased. Figure 2 shows the total amount of belite phases (β -C₂S, γ -C₂S and mayenite C₁₂A₇) depending on the SAPW amount.

Figure 3: Belite and mayenite phase content dependence from SAPW content in the slag.

1. Conclusions

The belite stabilization in refining slag with the SAPW addition has a chemical mechanism. It is provided by increasing the content of the mayenite $C_{12}A_7$ phase while general content of belite phases in the slag is simultaneously decreased.

References

- [1] Z. Huaiwei and H. Xin, "An overview for the utilization of wastes from stainless steel industries," Resources, Conservation and Recycling, vol. 55, no. 8, pp. 745–754, 2011.
- [2] Y. Pontikes, P. T. Jones, D. Geysen, and B. Blanpain, "Options to prevent dicalcium silicate-driven disintegration of stainless steel slags," Archives of Metallurgy and Materials, vol. 55, no. 4, pp. 1167–1172, 2010.
- [3] D. Geysen, P. T. Jones, Y. Pontikes et al., "'Slag valorisation' as an example of high temperature industrial ecology," in *Proceedings of the EPD Congress 2010 - TMS 2010 Annual Meeting and Exhibition*, pp. 877–884, USA, February 2010.
- [4] Y. Pontikes, L. Kriskova, X. Wang et al., "Additions of industrial residues for hot stage engineering of stainless steel slags, 2-nd International Slag Valorisation Symposium," in 2nd International Slag Valorisation Symposium, pp. 313–326, 2011.
- [5] L. Kriskova, Y. Pontikes, Ö. Cizer et al., "Effect of mechanical activation on the hydraulic properties of stainless steel slags," Cement and Concrete Research, vol.

42, no. 6, pp. 778-788, 2012.

[6] R. I. Iacobescu, P. Pontikes, A. Malfliet et al., "A secondary alumina source for the stabilisation of CaO-SiO-MgO slags," in *Proceedings of the 3rd International Slag Valorisation Symposium*, pp. 311–314, 2013.