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Abstract
Highly sensitive laser interferometer was built to measure electromechanical coupling
in Gd-doped ceria Ce0.9Gd0.1O2−𝑥 thin films in the frequency range up to 20 kHz.
Spurious resonances due to substrate bending were avoided by the special mounting
of the film in the center of substrate. Compact design allowed to reach high vertical
resolution of about 0.2 pm. Electrostriction coefficient measured in 1 𝜇m thick
Ce0.9Gd0.1O2−𝑥 film was 4.3×10−21m2/V2 and slightly decreased with frequency till the
extensional resonance of the substrate at about 20 kHz occurred. As expected, the
displacement varied as a square of applied voltage without any sign of saturation.
A comparison with ceramics showed much higher electrostriction coefficient in the
latter in the same frequency range.
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1. Introduction

Gd-doped ceria Ce0.9Gd0.1O2−𝑥 (CGO) is a lead free compound with unusual mechanical
and electromechanical properties. Off-center shift of the Ce4+ ions in the cubic oxygen
environment away from oxygen vacancies under an action of the external electric field
in CGO results in appearance of the “giant” electromechanical strain at low frequencies
[1]. The effective electrostriction coefficient measured by the cantilever method at low
frequencies was M𝑒 = 6.47 ± 0.43 × 10−18 m2⋅V−2 [1, 2]. It is, therefore, attractive for
micromechanical applications, if the same effect is pertinent to thin films. Cantilever
technique does not have enough sensitivity, and precise laser interferometry method
has to be used in order to measure sub-Angstrom electromechanical displacements
in thin films. In this work, we built a simple single-beam Michelson interferometer
with the high vertical resolution capable of themeasurements of electrostriction effect
in thin films and report for the first time the electrostriction coefficient value in the
Ce0.9Gd0.1O1.95 layers of the thickness of about 1 𝜇m.
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Figure 1: Scheme of the modified Michelson interferometer.

2. Methods

For this study we used CGO thin films samples. Ceramic samples were prepared by the
solid synthesis route as described in the earlier work [3, 4]. The surfacewas polished to
optical quality and coated by Al electrodes via magnetron sputtering. Thin films were
prepared on the 250 𝜇m thick n-Si++ wafers via sequential RF magnetron sputtering
of the 150 nm thick of Cr layer, ≈900 nm thick CGO-layer, 300 nm thick of Cr layer. Cr
layers served as the top and bottom electrodes. Top electrodes were deposited via
shadow masks. The diameters of the top electrodes were 2 mm.
For the measurements of the small electric field induced displacements we used a

standard scheme of single-beam Michelson homodyne. interferometer as described
in many publications (see e.g. [5, 6]). The schematic of the interferometer setup is
shown in Fig. 1. Depending on the path length difference between the interferometer
arms, small displacements of the sample surface produce a change in detected light
intensity anywhere between the maximum theoretical sensitivity and zero. In order
to maintain the working point between the minimum and maximum position of the
photodetector, a PID-feedback system was used to stabilize the system against the
slow optical path-length drift with the cut-off frequency of 5 Hz. The system compen-
sates for the drift below 5 Hz and assumes that higher frequency is due to electric field
induced displacements. The system was as compact as possible with the optical path
of each arm about 1 m.
We used a single-mode stabilized solid state diode laser LCM-S-111-20-NP25 (Laser-

compact, Russia) with a wavelength 532 nm and a power 20 mW, lock-in ampli-
fier SR830 (Stanford Research, USA), multifunction data acquisition board USB-6251
(National Instruments, USA), and signal generator Agilent 33210A (Keysight Technolo-
gies, USA). For the PID-feedback loop piezo actuator P-841.01 and piezo controller
E-709.SRG (Physik Instrumente (PI), Germany) were used.
The minimal displacements (interferometer resolution) are determined by the noise

in the laser and in photodetector by the minimal voltage measured by the lock-in
amplifier. On the top of this, the system experiences also a vibrational noise from the
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Figure 2: Spectral density of the noise registered by the interferometric setup.

environment amplified by the mechanical resonances in the sample holder. In order
to reduce this noise, we used a special fixture for the sample holder (Fig. 1). The thin
film sample was rigidly glued to the small steel rod with the contact area of 5 mm2 in
the central part. Thus, the effect of bending resonances on the vibrational noise was
avoided. Also, the part of the interferometer containing both arms were isolated from
the environment using a special box made of foam boards, foam rubbers, and alu-
minum frame. Figure 2 shows the equivalent displacement noise of the system in the
range 2-15 kHz measured for the time constant of lock-in amplifier 100 ms. It is clearly
seen that the vibrational noise still dominates the response and the resolution varies
in the range 10−2 ÷ 10−4 Å depending on frequency. Thus, the frequency dependence
of the electrostrictive displacements can be measured with high enough accuracy.
The performance of the interferometer was validated by measuring the displace-

ments in a standard ceramic PZT5A pellet [7]. The frequency response within the range
of 1 to 10 kHz (Fig. 3a, red curve) was almost flat with a small number of spurious
resonances that prevented accurate measurements in a broad frequency range. In
comparison, strong resonance behavior was observed in the film in a standard configu-
ration, i.e. when it was glued by entire surface (black curve). It demonstrates effective
suppression of the bending effect in bulk ceramics. Measured piezoelectric coefficient
of PZT5A was 374 ± 5 pm/V. This value is in a good agreement with the table value for
the piezoelectric coefficient d33 of PZT5A [7]. To verify the linearity of the setup, we
measured the AC-voltage dependence of displacements in congruent lithium niobate
(CLN) sample (Z-cut) that has negligible own non-linearity. Figure 3b demonstrates
that the amplitude of the displacement is linear with the amplitude of applied voltage
up to 5 V. The resulting piezoelectric coefficient of CLN sample d33 was 6 pm/V, which
also corresponds to the table value [8]. The minimum displacement measured in this
case was 2⋅10−2 Å (signal to noise ratio 1).

3. Results

The results of the electrostriction measurements in CGO thin film samples are shown in
Figure 4.Measurementswere done in the frequency range 5-30 kHz (second harmonic)
and voltage amplitudes up to 6 V. The frequency dependence was almost flat with a
tendency to decrease up to a clear resonance at 20.1 kHz. This peak is attributed to the
extensional resonance of substrate that cannot be avoided in the present setup. The
measured effective electrostriction coefficientwasM33 = 4.3 ⋅ 10−21m2/V2 at frequency

DOI 10.18502/kms.v1i1.582 Page 179



 

KnE Materials Science ASRTU Conference Proceedings

Figure 3: (a) Frequency dependency of piezoelectric response of the PZT5A sample measured by
interferometer before modifications (black) and after (red). (b) Voltage dependency of piezoelectric
response of the CLN sample.

Figure 4: (a) Voltage and (b) frequency dependencies of amplitude of CGO thin films.

Figure 5: (a) Time dependence of the displacement of CGO thin film sample’s top surface and (b) scheme
for Stoney formula.

13.49 kHz (Fig. 4a, b). This value is much lower than that reported in Ref. [1], measured
in ceramics at low frequency. Measurements below 1 kHz are difficult in our setup
because of the increase of vibrational noise from the nearby machines and natural
limit due to the cut-off frequency of the feedback system. Low value of M33 can be
also attested to the clamping effect of the substrate and smaller grain size as compared
to ceramics.
For the interferometric studies, the surfaces of the ceramic samples were polished

and the reflecting Cr-electrodes were sputtered using Edwards Auto 500 electron-
beam evaporation system. Measurements of the electrostrictive coefficient M33 were
performed by applying AC voltage with frequency f, and the surface displacement was
measured at 2f using the corresponding feature of the lock-in. The time constant of
the lock-in was always 300 ms.
In our setup, we could also measure a transverse electrostriction coefficient M13. In

this case, 700 nm CGO thin film was allowed to bend during DC voltage application of
4.9 V. In this case, bending moment develops, which translates into the displacement
of the top surface of the film (see schematic in Fig. 5a). The effective electrostriction
coefficient M13 can be calculated from this data using the Stoney formula [9] (Fig. 5b)
that is generally used to calculate the residual stress value:
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𝜎 = 𝑌𝑠
6(1 − 𝜈𝑠)

𝑡2𝑠
𝑡𝑓
Δ𝑅 (1)

where Y𝑠 is the Young’s modulus of substrate (179 GPa), 𝜈𝑠 is the Poisson’s ratio (27),
t𝑠 is the thickness of the substrate (250 um), t𝑓 is the thickness of the film (700 nm),
and 𝛥R is the change of the curvature radius of the bent sample (1.25 m). Then, the
stress value can be used in calculation of M13 coefficient:

𝑀13 =
𝛾13 ⋅ (1 − 𝜈𝑓)

𝑌𝑓
(2)

where 𝛾13 is the stress coefficient (𝜎⋅E−2, ≈600 kPa⋅kV−2⋅cm−2), Y𝑓 is the Young’s
modulus of film (190 GPa), and 𝜈𝑓 is the Poisson ration of the film (43). The estimated
electrostrictive coefficient was M13 = 1.7⋅10−16 m2/V2, which is very close to the value
reported in Refs. [1, 2]. We should take into account that this value is measured at DC
(i.e., at zero frequency) in the partially clamped conditions. That effective electrostric-
tion coefficient is determined not only by the intrinsic mechanism due to ionic displace-
ments and bond stretching, but can also depend on the competition between intragrain
conductivity and Schottky behavior of the electrodes; large difference between the DC
and high frequency measurements is not a surprise. Further measurements need to
clear out the electrostriction mechanism in the CGO films.

4. Conclusions

Highly sensitive single beam interferometer to measure electrostrictive displacements
was developed in this work. Resolution of the interferometer varied in the range
10−2 ÷ 10−4 Å depending on frequency and the minimum displacement measured was
2⋅10−2 Å. Gd-doped ceria Ce0.9Gd0.1O1.95 (CGO) thin films have been investigated to get
both M33 and M31 coefficients. Interferometric measurements showed relatively low
electrostrictive coefficients at high frequency (M33 = 4.3⋅10−21 m2/V2) possibly due
to elevated impedance of electrodes at high frequencies. Applying the DC voltage
to the film provided giant displacement in thin film and the calculated transverse
electrostrictive coefficient was M13= 1.7⋅10−16 m2/V2.
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